Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. What function $f(x)$ do you know such that some antiderivative of $f(x)$ is equal to $f(x)$? Is there more than one such function?
2. Show that the point on the parabola $x+y^{2}=0$ closest to the point $(0,-3)$ is the point $(-1,-1)$. [This is exercise 16 on page 337 of the textbook.]
3. Find a function $f(x)$ such that $f^{\prime \prime \prime}(x)=\sin x, f(0)=1, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=1$.
[This is exercise 40 on page 354 of the textbook.]
4. Suppose $f(x)=x^{4}-c x^{2}+x$, where c is a constant (possibly positive or negative or zero). For what range of values of c does the graph of f have no inflection points? one inflection point? two inflection points? [This is based on exercise 26 on page 331 of the textbook.]
