1. Recall from section 3.11 that $P(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$ is the quadratic approximation to the function f at the point a. Use l'Hospital's rule to show that if f has a continuous second derivative,

then

$$\lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^2} = 0.$$

Quiz 13

Calculus

Instructions Please write your name in the upper right-hand corner of the

page. Write complete sentences to explain your solutions.

2. The TI-89 calculator says that $\tan^{-1}(\tan(\pi)) = 0$. Since \tan^{-1} and \tan are inverse functions, why is the answer not equal to π ?

Quiz 13 Calculus

3. Show that $\sin^2(\cos^{-1}(x)) = 1 - x^2$ when $-1 \le x \le 1$. [Remember that the two exponents have different meanings: the exponent -1 means inverse function, while the exponent 2 means the second power.]

4. The TI-89 calculator says that $\lim_{x\to\infty} (xe^{1/x} - x) = 1$. Prove this result.