$\overset{\rm Quiz \ 10}{{\bf Calculus}}$

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Suppose $f(x) = \frac{\cos x}{2 + \sin x}$. Find the absolute maximum value of this function for x in the closed interval $[0, 2\pi]$. [This is exercise 50 on page 313 of the textbook.]

Solution. By the quotient rule,

$$f'(x) = \frac{(2+\sin x)(-\sin x) - (\cos x)(\cos x)}{(2+\sin x)^2} = \frac{-2\sin x - \sin^2 x - \cos^2 x}{(2+\sin x)^2}.$$

Since $\sin^2 x + \cos^2 x = 1$, the derivative f'(x) is equal to 0 if and only if $\sin x = -1/2$, which means that $\cos x = \pm \sqrt{3}/2$. Substituting these values for $\sin x$ and $\cos x$ back into the expression for f(x) shows that at the critical points, the value of the function is $\pm (\sqrt{3}/2)/(3/2)$, or $\pm \sqrt{3}/3$, or $\pm 1/\sqrt{3}$.

At the endpoints 0 and 2π , the function has the value 1/2. Since $1/2 < 1/\sqrt{3}$, the maximum value of the function is $1/\sqrt{3}$ (taken when $x = 11\pi/6$).

2. The graph below shows the *derivative* f'(x) on the open interval (0, 6). Determine the values of x for which the graph of the *original function* f(x) [not shown] has (a) local minima and (b) inflection points.

Solution. (a) Local minima occur when f(x) changes from decreasing to increasing, or when f'(x) changes from negative to positive, that is,

at x = 1 and x = 5. (At x = 3, there is a local maximum, because the derivative changes from positive to negative.)

(b) There are inflection points when the derivative changes from increasing to decreasing (or vice versa). This happens when x = 2 and x = 4.

3. Suppose f is a function that has derivatives of all orders. If f(0) = 0 and f'(0) = 2, compute the limit $\lim_{x \to 0} \frac{f(x)\sin(3x)}{1 - e^{x^2}}$.

Solution. Method 1. This is a 0/0 indeterminate form, so by l'Hospital's rule, the limit equals

$$\lim_{x \to 0} \frac{f'(x)\sin(3x) + 3f(x)\cos(3x)}{-2xe^{x^2}}.$$

The new limit is still an indeterminate form, and another application of l'Hospital's rule gives

$$\lim_{x \to 0} \frac{f''(x)\sin(3x) + 3f'(x)\cos(3x) + 3f'(x)\cos(3x) - 9f(x)\sin(3x)}{-2e^{x^2} - 4x^2e^{x^2}}.$$

Substituting x = 0 gives the result -6.

Method 2. A little trickery will reduce the computational complexity. We know that $\lim_{x\to 0} \frac{\sin(3x)}{3x} = 1$, and the given information implies that $\lim_{x\to 0} \frac{f(x)}{2x} = 1$. Therefore

$$\lim_{x \to 0} \frac{f(x)\sin(3x)}{1 - e^{x^2}} = \lim_{x \to 0} \frac{6x^2}{1 - e^{x^2}} = \lim_{t \to 0^+} \frac{6t}{1 - e^t}.$$

Now a single application of l'Hospital's rule produces the answer -6.

- 4. Sketch the graph of a function f that satisfies all of the following conditions.
 - Conditions on the function: f(-1) = 4 and f(1) = 0.
 - Conditions on the derivative: f'(-1) = 0 and f'(1) does not exist.
 - Additional conditions on the derivative: f'(x) < 0 if |x| < 1 and f'(x) > 0 if |x| > 1.

Quiz 10 Calculus

• Condition on the second derivative: f''(x) < 0 if $x \neq 1$.

[This is exercise 16 on page 306 of the textbook.]

Solution. On $(-\infty, -1)$, the graph of the function f is increasing and concave down; on (-1, 1), the graph is decreasing and concave down; there is a local maximum at x = -1; and on $(1, \infty)$, the graph is increasing and concave down. Since f'(1) does not exist, either the lefthand derivative at x = 1 and the right-hand derivative are unequal, or one of these one-sided derivatives fails to exist. An example of a graph satisfying all these properties is shown below.

This particular graph corresponds to the following piecewise-defined function:

$$f(x) = \begin{cases} 4 - (x+1)^2, & \text{if } x \le 1, \\ \ln(x), & \text{if } x > 1. \end{cases}$$