Quiz 10
Calculus

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Suppose $f(x)=\frac{\cos x}{2+\sin x}$. Find the absolute maximum value of this function for x in the closed interval $[0,2 \pi]$.
[This is exercise 50 on page 313 of the textbook.]

Solution. By the quotient rule,
$f^{\prime}(x)=\frac{(2+\sin x)(-\sin x)-(\cos x)(\cos x)}{(2+\sin x)^{2}}=\frac{-2 \sin x-\sin ^{2} x-\cos ^{2} x}{(2+\sin x)^{2}}$.
Since $\sin ^{2} x+\cos ^{2} x=1$, the derivative $f^{\prime}(x)$ is equal to 0 if and only if $\sin x=-1 / 2$, which means that $\cos x= \pm \sqrt{3} / 2$. Substituting these values for $\sin x$ and $\cos x$ back into the expression for $f(x)$ shows that at the critical points, the value of the function is $\pm(\sqrt{3} / 2) /(3 / 2)$, or $\pm \sqrt{3} / 3$, or $\pm 1 / \sqrt{3}$.
At the endpoints 0 and 2π, the function has the value $1 / 2$. Since $1 / 2<1 / \sqrt{3}$, the maximum value of the function is $1 / \sqrt{3}$ (taken when $x=11 \pi / 6)$.
2. The graph below shows the derivative $f^{\prime}(x)$ on the open interval $(0,6)$. Determine the values of x for which the graph of the original function $f(x)$ [not shown] has (a) local minima and (b) inflection points.

Solution. (a) Local minima occur when $f(x)$ changes from decreasing to increasing, or when $f^{\prime}(x)$ changes from negative to positive, that is,

Quiz 10

Calculus

at $x=1$ and $x=5$. (At $x=3$, there is a local maximum, because the derivative changes from positive to negative.)
(b) There are inflection points when the derivative changes from increasing to decreasing (or vice versa). This happens when $x=2$ and $x=4$.
3. Suppose f is a function that has derivatives of all orders. If $f(0)=0$ and $f^{\prime}(0)=2$, compute the limit $\lim _{x \rightarrow 0} \frac{f(x) \sin (3 x)}{1-e^{x^{2}}}$.

Solution. Method 1. This is a 0/0 indeterminate form, so by l'Hospital's rule, the limit equals

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x) \sin (3 x)+3 f(x) \cos (3 x)}{-2 x e^{x^{2}}} .
$$

The new limit is still an indeterminate form, and another application of l'Hospital's rule gives

$$
\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x) \sin (3 x)+3 f^{\prime}(x) \cos (3 x)+3 f^{\prime}(x) \cos (3 x)-9 f(x) \sin (3 x)}{-2 e^{x^{2}}-4 x^{2} e^{x^{2}}}
$$

Substituting $x=0$ gives the result -6 .
Method 2. A little trickery will reduce the computational complexity. We know that $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=1$, and the given information implies that $\lim _{x \rightarrow 0} \frac{f(x)}{2 x}=1$. Therefore

$$
\lim _{x \rightarrow 0} \frac{f(x) \sin (3 x)}{1-e^{x^{2}}}=\lim _{x \rightarrow 0} \frac{6 x^{2}}{1-e^{x^{2}}}=\lim _{t \rightarrow 0^{+}} \frac{6 t}{1-e^{t}} .
$$

Now a single application of l'Hospital's rule produces the answer -6.
4. Sketch the graph of a function f that satisfies all of the following conditions.

- Conditions on the function: $f(-1)=4$ and $f(1)=0$.
- Conditions on the derivative: $f^{\prime}(-1)=0$ and $f^{\prime}(1)$ does not exist.
- Additional conditions on the derivative: $f^{\prime}(x)<0$ if $|x|<1$ and $f^{\prime}(x)>0$ if $|x|>1$.

Calculus

- Condition on the second derivative: $f^{\prime \prime}(x)<0$ if $x \neq 1$.
[This is exercise 16 on page 306 of the textbook.]
Solution. On $(-\infty,-1)$, the graph of the function f is increasing and concave down; on $(-1,1)$, the graph is decreasing and concave down; there is a local maximum at $x=-1$; and on $(1, \infty)$, the graph is increasing and concave down. Since $f^{\prime}(1)$ does not exist, either the lefthand derivative at $x=1$ and the right-hand derivative are unequal, or one of these one-sided derivatives fails to exist. An example of a graph satisfying all these properties is shown below.

This particular graph corresponds to the following piecewise-defined function:

$$
f(x)= \begin{cases}4-(x+1)^{2}, & \text { if } x \leq 1 \\ \ln (x), & \text { if } x>1\end{cases}
$$

