Quiz 12
Calculus

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Suppose $f(x)=4 \cos x$. Show that the Riemann sum for the function f on the interval $[0, \pi / 2]$ using left-hand endpoints for the partition $\{0, \pi / 6, \pi / 4, \pi / 3, \pi / 2\}$ is equal to $\pi(6+\sqrt{3}+\sqrt{2}) / 6$. [This is exercise 8 on page 377 of the textbook.]

Solution. Writing out $\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x_{i}$ gives the sum

$$
\begin{aligned}
4 \cos (0)\left(\frac{\pi}{6}-0\right)+ & 4 \cos (\pi / 6)\left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
& +4 \cos (\pi / 4)\left(\frac{\pi}{3}-\frac{\pi}{4}\right)+4 \cos (\pi / 3)\left(\frac{\pi}{2}-\frac{\pi}{3}\right)
\end{aligned}
$$

which simplifies to

$$
4 \cdot \frac{\pi}{6}+4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{12}+4 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\pi}{12}+4 \cdot \frac{1}{2} \cdot \frac{\pi}{6}
$$

or $\frac{\pi}{6}(6+\sqrt{3}+\sqrt{2})$.
2. Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n} \sin \left(\frac{4 i^{2}}{n^{2}}\right)$ as a definite integral.

Solution. The solution is not unique, but perhaps the most natural interpretation of the expression is the limit of Riemann sums for regular partitions of the interval $[0,2]$ into n subintervals each of width $2 / n$, where right-hand endpoints are used, and the function is $\sin \left(x^{2}\right)$. The limit is then equal to the definite integral $\int_{0}^{2} \sin \left(x^{2}\right) d x$.
Another interpretation is that the interval is $[0,1]$, the n subintervals of the partition each have width $1 / n$, the function is $2 \sin \left(4 x^{2}\right)$, and the limit is equal to the definite integral $\int_{0}^{1} 2 \sin \left(4 x^{2}\right) d x$.

Calculus

3. Let $p_{1}=2, p_{2}=3, p_{3}=5$, and in general let p_{n} be the nth prime number. What is the smallest value of k for which $\sum_{i=1}^{k} \frac{1}{p_{i}}>1$?

Solution. When $k=1$, the sum equals $\frac{1}{2}$. When $k=2$, the sum equals $\frac{1}{2}+\frac{1}{3}$, or $\frac{5}{6}$. When $k=3$, the sum equals $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}$, or $\frac{31}{30}$. Thus the sum first exceeds 1 when $k=3$.
4. The figure shows the graph of a function f. Estimate the value of $\int_{0}^{4} f(x) d x$ by using a regular partition with four subintervals and choosing right-hand endpoints.

Solution. The estimate is the shaded area below: namely, 10 .

