Quiz 13
Calculus

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Recall from section 3.11 that $P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$ is the quadratic approximation to the function f at the point a. Use l'Hospital's rule to show that if f has a continuous second derivative, then

$$
\lim _{x \rightarrow a} \frac{f(x)-P(x)}{(x-a)^{2}}=0 .
$$

Solution. Since $f(a)-P(a)=0$, l'Hospital's rule implies that
$\lim _{x \rightarrow a} \frac{f(x)-P(x)}{(x-a)^{2}}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-P^{\prime}(x)}{2(x-a)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)-f^{\prime \prime}(a)(x-a)}{2(x-a)}$.
The new limit is again an indeterminate $0 / 0$ form, and a second application of l'Hospital's rule gives the result

$$
\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)-f^{\prime \prime}(a)}{2}=0 .
$$

2. The TI- 89 calculator says that $\tan ^{-1}(\tan (\pi))=0$. Since $\tan ^{-1}$ and tan are inverse functions, why is the answer not equal to π ?

Solution. Since the tangent function is periodic, it is not one-to-one, and it does not have an inverse function on its whole domain. The function $\tan ^{-1}$ is the inverse of the restriction of the tangent function to the interval $(-\pi / 2, \pi / 2)$.
In other words, $\tan ^{-1}(x)$ means the angle between $-\pi / 2$ and $\pi / 2$ whose tangent is equal to x. Thus $\tan ^{-1}(\tan (\pi))$ means the angle between $-\pi / 2$ and $\pi / 2$ whose tangent equals $\tan (\pi)$, and since the tangent function has period π, this angle is 0 .

Quiz 13
Calculus
3. Show that $\sin ^{2}\left(\cos ^{-1}(x)\right)=1-x^{2}$ when $-1 \leq x \leq 1$.
[Remember that the two exponents have different meanings: the exponent -1 means inverse function, while the exponent 2 means the second power.]

Solution. Method 1. Draw a right triangle having angle θ, hypotenuse equal to 1 , and side adjacent to angle θ equal to x. Then $\theta=\cos ^{-1}(x)$. The third side of the triangle equals $\sqrt{1-x^{2}}$ by the Pythagorean theorem, but this third side also equals $\sin (\theta)$. The quantity to be found is $\sin ^{2}(\theta)$, which therefore equals $1-x^{2}$.
Method 2. Since $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ for every θ, we can write

$$
\sin ^{2}\left(\cos ^{-1}(x)\right)=1-\cos ^{2}\left(\cos ^{-1}(x)\right)
$$

Now $\cos ^{2}\left(\cos ^{-1}(x)\right)$ means $\left[\cos \left(\cos ^{-1}(x)\right)\right]^{2}$, which simplifies to x^{2} because \cos and $\cos ^{-1}$ are inverse functions. Substituting back into the displayed formula gives the desired result $1-x^{2}$.
4. The TI-89 calculator says that $\lim _{x \rightarrow \infty}\left(x e^{1 / x}-x\right)=1$. Prove this result.

Solution. Method 1. Write $x e^{1 / x}-x=x\left(e^{1 / x}-1\right)=\frac{e^{1 / x}-1}{1 / x}$. When $x \rightarrow \infty$, we have an indeterminate $0 / 0$ form, so l'Hospital's rule equates the limit to

$$
\lim _{x \rightarrow \infty} \frac{e^{1 / x}\left(-1 / x^{2}\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} e^{1 / x}=e^{0}=1
$$

Method 2. Write $x=1 / t$. Then

$$
\lim _{x \rightarrow \infty} x\left(e^{1 / x}-1\right)=\lim _{t \rightarrow 0^{+}} \frac{e^{t}-1}{t}
$$

and by l'Hospital's rule, the new limit equals $\lim _{t \rightarrow 0^{+}} e^{t}=1$.

