Calculus

Instructions Please write your name in the upper right-hand corner of the page.

If you need more space to write your solutions, you may use the back of the page or a separate sheet of paper.

1. How is the word "asymptote" spelled?

Solution. The spelling printed above is correct: asymptote. In standard dialects of English, the letter "p" is not pronounced in this word.
2. The line that passes through the two points $(1,-1)$ and $(4,5)$ has the standard Cartesian equation $y=2 x-3$. Find an equation for this line either in the vector form $\vec{r}(t)=\vec{r}_{0}+t \vec{v}$ or in the parametric form $x(t)=x_{0}+a t$ and $y(t)=y_{0}+b t$.

Solution. The vector \vec{v} must be parallel to the vector joining the two points: namely, $\langle 4-1,5-(-1)\rangle$ or $\langle 3,6\rangle$. The point \vec{r}_{0} can be any point on the line; a natural choice for \vec{r}_{0} would be either of the two given points. Thus one possible solution is $\vec{r}(t)=\langle 1,-1\rangle+t\langle 3,6\rangle$, and another possible solution is $\vec{r}(t)=\langle 4,5\rangle+t\langle 3,6\rangle$.
Any vector parallel to $\langle 3,6\rangle$ will do just as well, and the vector $\langle 1,2\rangle$ is a natural choice. Therefore either $\vec{r}(t)=\langle 1,-1\rangle+t\langle 1,2\rangle$ or $\vec{r}(t)=$ $\langle 4,5\rangle+t\langle 1,2\rangle$ is correct too. In fact, there are infinitely many correct solutions, since you could take any scalar multiple of $\langle 1,2\rangle$ for the vector \vec{v}, and you could take any point on the line as the base point $\overrightarrow{r_{0}}$. For instance, another correct solution is $\vec{r}(t)=\langle 0,-3\rangle+t\langle 2,4\rangle$.
One way to check your solution is to pick two values of t, say $t=0$ and $t=1$, and substitute them into your vector equation to obtain two points on the line. If these two points satisfy the Cartesian equation $y=2 x-3$, then your vector equation is correct.
You could also write the vector equation using the standard unit basis vectors \vec{i} and \vec{j}. Thus instead of writing $\vec{r}(t)=\langle 1,-1\rangle+t\langle 1,2\rangle$, you could write $\vec{r}(t)=(1+t) \vec{i}+(-1+2 t) \vec{j}$. That form of the answer translates directly into the equivalent parametric equations $x(t)=1+t$ and $y(t)=-1+2 t$.

There are infinitely many correct solutions in parametric form. Again, you can check your solution by picking two values of t and verifying that you get two points on the line with Cartesian equation $y=2 x-3$.
3. Draw a graph that illustrates a function f with the properties that $\lim _{x \rightarrow 2^{-}} f(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=3$.

Solution. There are many different correct solutions. There is a jump in the graph above $x=2$; the height of the graph approaches 1 as x approaches the value 2 from the left, and the height of the graph approaches 3 as x approaches the value 2 from the right. One such graph is shown below.

The open circle and the filled-in circle indicate in this picture that $f(2)=1$, but the value of f precisely at $x=2$ has no effect on either of the limits.
4. According to the precise definition of a limit, the meaning of the symbols " $\lim _{x \rightarrow a} f(x)=L$ " is that for every positive number ε there corresponds a positive number δ such that [fill in the blanks]
\qquad whenever

Solution. $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.

