$\overset{\rm Quiz\ 2}{{\bf Calculus}}$

Instructions Please write your name in the upper right-hand corner of the page.

If you need more space to write your solutions, you may use the back of the page or a separate sheet of paper.

1. How is the word "asymptote" spelled?

Solution. The spelling printed above is correct: asymptote. In standard dialects of English, the letter "p" is not pronounced in this word.

2. The line that passes through the two points (1, -1) and (4, 5) has the standard Cartesian equation y = 2x - 3. Find an equation for this line either in the vector form $\vec{r}(t) = \vec{r_0} + t\vec{v}$ or in the parametric form $x(t) = x_0 + at$ and $y(t) = y_0 + bt$.

Solution. The vector \vec{v} must be parallel to the vector joining the two points: namely, $\langle 4 - 1, 5 - (-1) \rangle$ or $\langle 3, 6 \rangle$. The point $\vec{r_0}$ can be any point on the line; a natural choice for $\vec{r_0}$ would be either of the two given points. Thus one possible solution is $\vec{r}(t) = \langle 1, -1 \rangle + t \langle 3, 6 \rangle$, and another possible solution is $\vec{r}(t) = \langle 4, 5 \rangle + t \langle 3, 6 \rangle$.

Any vector parallel to $\langle 3, 6 \rangle$ will do just as well, and the vector $\langle 1, 2 \rangle$ is a natural choice. Therefore either $\vec{r}(t) = \langle 1, -1 \rangle + t \langle 1, 2 \rangle$ or $\vec{r}(t) = \langle 4, 5 \rangle + t \langle 1, 2 \rangle$ is correct too. In fact, there are infinitely many correct solutions, since you could take any scalar multiple of $\langle 1, 2 \rangle$ for the vector \vec{v} , and you could take any point on the line as the base point $\vec{r_0}$. For instance, another correct solution is $\vec{r}(t) = \langle 0, -3 \rangle + t \langle 2, 4 \rangle$.

One way to check your solution is to pick two values of t, say t = 0and t = 1, and substitute them into your vector equation to obtain two points on the line. If these two points satisfy the Cartesian equation y = 2x - 3, then your vector equation is correct.

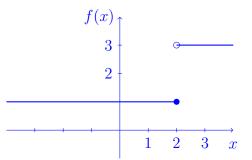
You could also write the vector equation using the standard unit basis vectors \vec{i} and \vec{j} . Thus instead of writing $\vec{r}(t) = \langle 1, -1 \rangle + t \langle 1, 2 \rangle$, you could write $\vec{r}(t) = (1 + t)\vec{i} + (-1 + 2t)\vec{j}$. That form of the answer translates directly into the equivalent parametric equations x(t) = 1 + t and y(t) = -1 + 2t.

$\stackrel{\rm Quiz\ 2}{\rm Calculus}$

There are infinitely many correct solutions in parametric form. Again, you can check your solution by picking two values of t and verifying that you get two points on the line with Cartesian equation y = 2x - 3.

3. Draw a graph that illustrates a function f with the properties that $\lim_{x\to 2^-} f(x) = 1$ and $\lim_{x\to 2^+} f(x) = 3$.

Solution. There are many different correct solutions. There is a jump in the graph above x = 2; the height of the graph approaches 1 as x approaches the value 2 from the left, and the height of the graph approaches 3 as x approaches the value 2 from the right. One such graph is shown below.



The open circle and the filled-in circle indicate in this picture that f(2) = 1, but the value of f precisely at x = 2 has no effect on either of the limits.

4. According to the precise definition of a limit, the meaning of the symbols " $\lim_{x \to a} f(x) = L$ " is that for every positive number ε there corresponds a positive number δ such that [fill in the blanks]

_____ whenever _____

Solution. $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.