$\overset{\rm Quiz \ 7}{\textbf{Calculus}}$

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. A curve in the xy-plane is given in parametric form by $x(t) = t^3 - 3t^2$ and $y(t) = t^3 - 3t$, where the parameter t runs through the real numbers. Find the points on the curve where the tangent line is vertical (that is, parallel to the y-axis).

[This is exercise 12 on page 214 of the textbook.]

Solution. According to the chain rule,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}.$$

To find points where the tangent line is vertical (undefined slope), we should find points where the denominator dx/dt = 0. Since $dx/dt = 3t^2 - 6t = 3t(t-2)$, the relevant values of t are 0 and 2. Since x(0) = 0 and y(0) = 0, while x(2) = -4 and y(2) = 2, the corresponding points on the curve are (0,0) and (-4,2).

[Incidentally, the second of these points happens to be the point of selfintersection of the curve. The second branch of the curve goes through the point (-4, 2) with slope 0 when t = -1.]

2. Find the linear approximation of the function $\frac{1}{2+x}$ at the point a = 0.

Solution. The linear approximation formula says that $f(x) \approx f(a) + f'(a)(x-a)$. Taking f(x) equal to 1/(2+x) and a equal to 0, we find that f(0) = 1/2 and $f'(x) = -1/(2+x)^2$, so f'(0) = -1/4. Thus

$$\frac{1}{2+x} \approx \frac{1}{2} - \frac{1}{4}x \quad \text{for } x \text{ close to } 0.$$

In the book's notation, $L(x) = \frac{1}{2} - \frac{1}{4}x$. Another way to think about this answer is that the tangent line to the curve y = 1/(2+x) at the point where x = 0 is $y = \frac{1}{2} - \frac{1}{4}x$.

Remarks: When D = 200, the angle $\theta = \pi/6$ and $x = 100\sqrt{3}$, but you do not actually need either of those pieces of information to solve the problem.

If in step (c) you wrote the relation $\frac{100}{x} = \tan \theta$, then your differentiated relation would be $-\frac{100}{x^2}\frac{dx}{dt} = \sec^2 \theta \frac{d\theta}{dt}$. Plugging in the numbers will lead to the same final answer as above.

3. A kite 100 feet above the ground moves horizontally at a speed of 8 feet/second. At what rate is the angle between the string and the horizontal decreasing when 200 feet of string have been let out? [This is exercise 22 on page 220 of the textbook.]

Math 171-501

- (a) The given information is that dx/dt = 8.
- (b) What we are supposed to find is $d\theta/dt$ when D = 200.
- (c) From the diagram, we can read off the relation $x = 100 \cot \theta$.
- (d) Differentiating the relation with respect to t using the chain rule, we find that $dx/dt = 100(-\csc^2\theta)\frac{d\theta}{dt}$.
- (e) From the diagram, you can see that when D = 200, the value of $\csc \theta$ is 200/100 or 2. Plugging the numbers into the equation from the preceding step, we have that $8 = 100 \times (-4) \times \frac{d\theta}{dt}$. Thus $\frac{d\theta}{dt} = -1/50$ or -0.02. In words, the angle is decreasing at a rate of 0.02 radians per second when D = 200.

kite

100

x