Calculus

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. A curve in the $x y$-plane is given in parametric form by $x(t)=t^{3}-3 t^{2}$ and $y(t)=t^{3}-3 t$, where the parameter t runs through the real numbers. Find the points on the curve where the tangent line is vertical (that is, parallel to the y-axis).
[This is exercise 12 on page 214 of the textbook.]

Solution. According to the chain rule,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} .
$$

To find points where the tangent line is vertical (undefined slope), we should find points where the denominator $d x / d t=0$. Since $d x / d t=$ $3 t^{2}-6 t=3 t(t-2)$, the relevant values of t are 0 and 2 . Since $x(0)=0$ and $y(0)=0$, while $x(2)=-4$ and $y(2)=2$, the corresponding points on the curve are $(0,0)$ and $(-4,2)$.
[Incidentally, the second of these points happens to be the point of selfintersection of the curve. The second branch of the curve goes through the point $(-4,2)$ with slope 0 when $t=-1$.]
2. Find the linear approximation of the function $\frac{1}{2+x}$ at the point $a=0$.

Solution. The linear approximation formula says that $f(x) \approx f(a)+$ $f^{\prime}(a)(x-a)$. Taking $f(x)$ equal to $1 /(2+x)$ and a equal to 0 , we find that $f(0)=1 / 2$ and $f^{\prime}(x)=-1 /(2+x)^{2}$, so $f^{\prime}(0)=-1 / 4$. Thus

$$
\frac{1}{2+x} \approx \frac{1}{2}-\frac{1}{4} x \quad \text { for } x \text { close to } 0 .
$$

In the book's notation, $L(x)=\frac{1}{2}-\frac{1}{4} x$. Another way to think about this answer is that the tangent line to the curve $y=1 /(2+x)$ at the point where $x=0$ is $y=\frac{1}{2}-\frac{1}{4} x$.

Calculus

3. A kite 100 feet above the ground moves horizontally at a speed of 8 feet/second. At what rate is the angle between the string and the horizontal decreasing when 200 feet of string have been let out? [This is exercise 22 on page 220 of the textbook.]

Solution.

(a) The given information is that $d x / d t=8$.
(b) What we are supposed to find is $d \theta / d t$ when $D=200$.
(c) From the diagram, we can read off the relation $x=100 \cot \theta$.
(d) Differentiating the relation with respect to t using the chain rule, we find that $d x / d t=100\left(-\csc ^{2} \theta\right) \frac{d \theta}{d t}$.
(e) From the diagram, you can see that when $D=200$, the value of $\csc \theta$ is $200 / 100$ or 2 . Plugging the numbers into the equation from the preceding step, we have that $8=100 \times(-4) \times \frac{d \theta}{d t}$. Thus $\frac{d \theta}{d t}=-1 / 50$ or -0.02 . In words, the angle is decreasing at a rate of 0.02 radians per second when $D=200$.

Remarks: When $D=200$, the angle $\theta=\pi / 6$ and $x=100 \sqrt{3}$, but you do not actually need either of those pieces of information to solve the problem.
If in step (c) you wrote the relation $\frac{100}{x}=\tan \theta$, then your differentiated relation would be $-\frac{100}{x^{2}} \frac{d x}{d t}=\sec ^{2} \theta \frac{d \theta}{d t}$. Plugging in the numbers will lead to the same final answer as above.

