Calculus

Math 172-502
Second Examination

Work all five problems. These are essay questions. To obtain maximal credit, show your work and explain your reasoning.

1. Show both that the improper integral $\int_{1}^{\infty} \frac{1}{1+x^{2}} d x$ converges and that the value of the integral is $\pi / 4$.
(You can do both parts with the same calculation.)
Solution. The goal is to show that the limit $\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{1+x^{2}} d x$ exists and has the value $\pi / 4$. Now

$$
\int_{1}^{N} \frac{1}{1+x^{2}} d x=\left.\arctan (x)\right|_{1} ^{N}=\arctan (N)-\arctan (1)
$$

When N gets large, the function $\arctan (N)$ approaches a horizontal asymptote at height $\pi / 2$; that is, $\lim _{N \rightarrow \infty} \arctan (N)=\pi / 2$. Therefore

$$
\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{1+x^{2}} d x \quad \text { exists, }
$$

and the value of the limit is

$$
\frac{\pi}{2}-\arctan (1)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

Thus the improper integral $\int_{1}^{\infty} \frac{1}{1+x^{2}} d x$ does converge and has the indicated value.
2. By solving the initial-value problem

$$
y^{\prime}+\frac{y}{x}=3 x, \quad y(1)=5
$$

show that $y(2)=6$.
Hint: use a suitable integrating factor.
Solution. The integrating factor is $\exp \left(\int \frac{1}{x} d x\right)=e^{\ln (x)}=x$. Multiplying the equation by the integrating factor gives the equivalent equation $x y^{\prime}+y=3 x^{2}$, or $(x y)^{\prime}=3 x^{2}$. Integrating gives $x y=x^{3}+C$ for some constant C. Invoking the initial condition gives $5=1+C$, so $C=4$. Therefore the solution of the differential equation is $x y=x^{3}+4$, or equivalently $y=x^{2}+\frac{4}{x}$. Consequently, $y(2)=2^{2}+\frac{4}{2}=6$.

Calculus

Math 172-502
Second Examination
3. The surface area of a hemisphere of radius 1 is equal to 2π. Verify this fact by computing the area of the surface obtained by revolving the curve

$$
x=\cos (t), \quad y=\sin (t), \quad 0 \leq t \leq \pi / 2
$$

about the y-axis. (The curve is one quarter of a circle.)
Solution. The arc length element in this problem is

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{\sin ^{2} t+\cos ^{2} t} d t=d t
$$

The surface area is therefore

$$
\int_{*}^{* *} 2 \pi x d s=\int_{0}^{\pi / 2} 2 \pi \cos (t) d t=\left.2 \pi \sin (t)\right|_{0} ^{\pi / 2}=2 \pi(1-0)=2 \pi
$$

4. Suppose f is an increasing function whose graph is concave down. If $f(2)=1.1, f(3)=1.25$, and $f(4)=1.33$, find an approximate value for the integral $\int_{2}^{4} f(x) d x$ with error less than 4%. Explain how you know that the error is less than 4%.
Hint: for a curve of the indicated type, the trapezoidal approximation is an under-estimate of the area, and the midpoint approximation is an over-estimate of the area.

Solution. The question can be answered by using the simplest possible trapezoidal and midpoint approximations, without even subdividing the interval $[2,4]$.
The area of a trapezoid whose base is the interval [2,4] and whose upper side joins the endpoints of the curve is (base) \times (average altitude) $=$ $2 \times \frac{1}{2}(1.1+1.33)=2.43$. This value is a lower estimate for the area under the curve (because the function is concave down). The area of a rectangle whose base is the interval $[2,4]$ and whose height is the value of the function at the midpoint is $2 \times 1.25=2.50$. This value is an upper estimate for the area under the curve (because the function is concave down). Thus

$$
2.43 \leq \int_{2}^{4} f(x) d x \leq 2.50
$$

Calculus

Math 172-502
Second Examination

Therefore both the trapezoidal approximation and the midpoint approximation differ from the true value of the integral by no more than $2.50-2.43=0.07$. Since $0.07 / 2.43 \approx 0.0288$, both the trapezoidal approximation and the midpoint approximation are accurate not only within 4% but even within 3%.

The preceding discussion suffices to answer the question, but one can do better by using the trapezoidal approximation with two subintervals $[2,3]$ and $[3,4]$, each of width 1 . That improved approximation equals $\frac{1}{2}(1.1+1.25)+\frac{1}{2}(1.25+1.33)=2.465$. The midpoint approximation with two subintervals would require the values $f(2.5)$ and $f(3.5)$, which are not given. Using the midpoint approximation previously computed and the second trapezoidal approximation shows that

$$
2.465 \leq \int_{2}^{4} f(x) d x \leq 2.50
$$

Therefore both this second trapezoidal approximation and the midpoint approximation differ from the true value of the integral by no more than $2.50-2.465=0.035$. Since $0.035 / 2.465 \approx 0.014$, both the second trapezoidal approximation and the midpoint approximation have an error less than 2%.

A further improvement is to average the second trapezoidal approximation and the midpoint approximation to get $\frac{1}{2}(2.465+2.50)=$ 2.4825 . This value differs from the true value of the integral by at most $\frac{1}{2}(2.50-2.465)=0.0175$. Hence the relative error is at most $0.0175 / 2.465 \approx 0.007$, or less than 1%.
5. Do either part (a) or part (b), whichever you prefer.
(a) Show that $\lim _{n \rightarrow \infty}(-1)^{n} \sin (1 / n)=0$.

Solution. A popular inadequate answer is:
"Since $\lim _{n \rightarrow \infty} \sin (1 / n)=\sin (0)=0$, and anything times 0 is 0 , then $\lim _{n \rightarrow \infty}(-1)^{n} \sin (1 / n)=0$." WRONG!
Although it is true that $\lim _{n \rightarrow \infty} \sin (1 / n)=0$ (because $\sin (x)$ is a continuous function at $x=0$), the argument is erroneous because the limit $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.

Calculus

One way to overcome the difficulty is to apply the squeeze theorem by setting $a_{n}=-\sin (1 / n)$ and $b_{n}=(-1)^{n} \sin (1 / n)$ and $c_{n}=$ $\sin (1 / n)$. Then $a_{n} \leq b_{n} \leq c_{n}$ for every n, and $\lim _{n \rightarrow \infty} a_{n}=0=$ $\lim _{n \rightarrow \infty} c_{n}$. Therefore $\lim _{n \rightarrow \infty} b_{n}=0$ by the squeeze theorem.
(b) Kim says that the series $\sum_{n=0}^{\infty} \frac{2^{n}+4^{n}}{5^{n}}$ diverges by the rule for geometric series because $\frac{2+4}{5}>1$. Lee says that the series converges to the value $\frac{20}{3}$.
Explain who (if anyone) is right, and why.
Solution. Kim is wrong because $2^{n}+4^{n} \neq(2+4)^{n}$. (Check the case $n=2$, for example.) In fact, since $2^{n}<4^{n}$, the numerator of the fraction is less than $4^{n}+4^{n}$ or 2×4^{n}. Therefore

$$
\sum_{n=0}^{\infty} \frac{2^{n}+4^{n}}{5^{n}}<\sum_{n=0}^{\infty} 2 \times \frac{4^{n}}{5^{n}}=2 \times \sum_{n=0}^{\infty}\left(\frac{4}{5}\right)^{n}
$$

so the original series is smaller than twice a convergent geometric series. Thus the original series does converge.
Moreover, by the linearity property of series (see Theorem 8 on page 591 of the textbook),

$$
\sum_{n=0}^{\infty} \frac{2^{n}+4^{n}}{5^{n}}=\sum_{n=0}^{\infty} \frac{2^{n}}{5^{n}}+\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}}=\sum_{n=0}^{\infty}\left(\frac{2}{5}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{4}{5}\right)^{n}
$$

The original series is thus the sum of two geometric series, both of which converge since the ratios $2 / 5$ and $4 / 5$ are both positive numbers less than 1. By the formula for the sum of a geometric series,

$$
\sum_{n=0}^{\infty} \frac{2^{n}+4^{n}}{5^{n}}=\frac{1}{1-\frac{2}{5}}+\frac{1}{1-\frac{4}{5}}=\frac{5}{3}+5=\frac{20}{3}
$$

Therefore Lee is correct.

