Calculus

Math 172-502

Third Examination

Fall 2005

Work all five problems. These are essay questions. To obtain maximal credit, show your work and explain your reasoning.

- 1. State the following convergence tests for infinite series.
 - (a) the ratio test
 - (b) the alternating series test

Solution. See the textbook, pages 609 (ratio test) and 605 (alternating series test).

2. Show that the series $\sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$ diverges.

Hint: use the integral test and the substitution $u = \ln(x)$.

Solution. Apply the integral test with f(x) equal to the function $\frac{1}{x \ln(x)}$ (which is positive and decreasing when $x \ge 3$). The substitution $u = \ln(x)$ shows that $\int \frac{1}{x \ln(x)} dx = \ln(\ln(x))$, so

$$\int_{3}^{\infty} \frac{1}{x \ln(x)} \, dx = \lim_{N \to \infty} \left[\ln(\ln(N)) - \ln(\ln(3)) \right] = \infty.$$

The integral diverges, so the series $\sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$ diverges too.

(This is problem 11, page 604, from the suggested homework problems.)

3. Show that the power series $\sum_{n=1}^{\infty} \frac{2^n}{n} x^n$ converges when $-\frac{1}{2} \le x < \frac{1}{2}$ and diverges for all other values of x.

(Remember that you usually need to apply one method to find the radius of convergence and a different method to test the endpoints of the interval.)

November 30, 2005

Math 172-502

Third Examination

Fall 2005

Solution. Since $\lim_{n \to \infty} \left| \frac{\frac{2^{n+1}x^{n+1}}{n+1}}{\frac{2^n x^n}{n}} \right| = 2|x| \lim_{n \to \infty} \frac{n}{n+1} = 2|x|$, the ratio test implies that the series converges when $|x| < \frac{1}{2}$ and diverges when $|x| > \frac{1}{2}$.

At the right-hand endpoint where $x = \frac{1}{2}$, the series equals $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges (it is the harmonic series). At the left-hand endpoint where $x = -\frac{1}{2}$, the series equals $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, which converges by the alternating series test.

Thus the interval of convergence of the power series is $\left[-\frac{1}{2}, \frac{1}{2}\right)$.

4. Use an appropriate test to show that the series $\sum_{n=1}^{\infty} \frac{n+n^2}{1+n^4}$ converges.

Solution. The idea is that when *n* is large, the fraction $\frac{n+n^2}{1+n^4}$ is nearly equal to $\frac{n^2}{n^4}$ or $\frac{1}{n^2}$, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. Here are two ways to make this idea precise.

Inequality comparison: Since $\frac{n+n^2}{1+n^4} < \frac{n+n^2}{n^4} = \frac{1}{n^3} + \frac{1}{n^2}$, and the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ are both convergent *p*-series (p > 1), our series $\sum_{n=1}^{\infty} \frac{n+n^2}{1+n^4}$ converges because it is smaller than the sum of two convergent series.

Limit comparison: Since

 $\lim_{n \to \infty} \frac{n+n^2}{1+n^4} \Big/ \frac{1}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{n}+1}{\frac{1}{n^4}+1} = 1,$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series, our series $\sum_{n=1}^{\infty} \frac{n+n^2}{1+n^4}$ converges by the limit comparison test.

November 30, 2005

Calculus

Math 172-502

Third Examination

Fall 2005

- 5. Do either part (a) or part (b), whichever you prefer.
 - (a) Show that $\sum_{n=1}^{\infty} \frac{1}{n 2^n} = \ln(2).$

Hint: look at what happens if you integrate the geometric series $1 + x + x^2 + x^3 + \cdots$.

Solution. Since $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$ when |x| < 1, integrating gives

$$-\ln(1-x) = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots = \sum_{n=1}^{\infty} \frac{x^n}{n} \quad \text{when } |x| < 1.$$

(In principle there is a constant of integration, but setting x = 0 shows that the integration constant equals 0.) Substitute $x = \frac{1}{2}$ in this equation to obtain

$$-\ln\left(1-\frac{1}{2}\right) = \sum_{n=1}^{\infty} \frac{(1/2)^n}{n}$$

The right-hand side equals our series $\sum_{n=1}^{\infty} \frac{1}{n2^n}$, and the left-hand side simplifies to $\ln(2)$.

(b) Show that $\sum_{n=0}^{\infty} (n+1) \left(\frac{3}{4}\right)^n = 16.$

Hint: look at what happens if you differentiate the geometric series $1 + x + x^2 + x^3 + \cdots$.

Solution. Since $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$ when |x| < 1, differentiating gives

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots = \sum_{n=0}^{\infty} (n+1)x^n \quad \text{when } |x| < 1.$$

Substitute $x = \frac{3}{4}$ in this equation and observe that $\frac{1}{(1-\frac{3}{4})^2} = 16$.