1. For each of the following functions, say whether the function is (i) injective, (ii) surjective, (iii) invertible.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ for every real number x.
(b) $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$defined by $g(n)=n^{3}$ for every integer n.
(c) $h: \mathbb{P}(A) \rightarrow \mathbb{P}(A)$ (where A is some non-empty set, and $\mathbb{P}(A)$ is its power set) defined by $h(X)=A-X$ for every subset X of A.
2. For each of the following relations, say whether the relation is (i) reflexive, (ii) symmetric, (iii) transitive.
(a) The relation \leq on the real numbers \mathbb{R}.
(b) The relation R defined on the positive integers \mathbb{Z}^{+}by $n R m$ if n and m have a common prime factor (that is, $\operatorname{gcd}(n, m)>1$).
(c) The relation S defined on the power set $\mathbb{P}(A)$ of a non-empty set A by $X S Y$ if $X \cup Y=A$.
3. For each of the following binary operations, say whether the operation (i) is commutative, (ii) is associative, (iii) has an identity element.
(a) Addition on the set \mathbb{Z}^{+}of positive integers.
(b) Matrix multiplication on the set $M_{2}(\mathbb{R})$ of 2×2 matrices with real entries.
(c) Function composition on the set of permutations of $\{1,2,3\}$.
(Recall that permutations of a set A are bijective functions from A to A.)
4. Working in \mathbb{Z}_{5}, the set of equivalence classes of integers modulo 5 equipped with its usual binary operations of addition $(+)$ and multiplication (\times), match each entry in the first column with an equal entry in the second column.

5. Consider a rectangular chocolate bar that has horizontal and vertical lines scored across the surface to mark off n small rectangles. (The figure shows the case when $n=12$.)

You wish to break the chocolate bar into the n individual rectangles by breaking along the lines. Use the method of strong induction to show that exactly $(n-1)$ breaks have to be made.

Extra credit

Suppose that A is a set with n elements, where n is an integer and $n \geq 3$. The following three quantities all have the same value:
(a) the number of partitions of A into three non-empty, non-overlapping subsets;
(b) the number of equivalence relations on A that have exactly three equivalence classes;
(c) one-sixth the number of surjective functions with domain A and codomain $\{1,2,3\}$.

Find a formula (in terms of n) for the common value of these three quantities.

