1. (a) Give an example of two infinite sets A and B such that $A \subset B$ (that is, A is a proper subset of B) and such that there exists a bijective function $f: A \rightarrow B$.
(b) Give an example of two infinite sets X and Y such that $X \subset Y$ and such that there does not exist a bijective function $g: X \rightarrow Y$.
2. Find integers k and n such that $1121 k+220 n=1$.
3. For each of the following sets, say what its cardinality is. Possible answers are \aleph_{0} (countably infinite), \mathbf{c} (cardinality of the continuum), and "other". You may assume the axiom of choice.
(a) The set of prime numbers.
(b) The set of real numbers of the form $r+s \sqrt{2}$, where the numbers r and s are rational numbers.
(c) The set of all functions whose domain is the set of integers and whose codomain is the doubleton set $\{0,1\}$.
4. The base-two logarithm function $\log _{2}$ is defined by the property

$$
\log _{2}(x)=y \text { if and only if } x=2^{y}
$$

Prove that $\log _{2}(220)$ is an irrational number.
5. This problem asks for two different proofs that the inequality $n<2^{n}$ is true for every positive integer n.
(a) Use the method of induction to prove the inequality.
(b) Apply Cantor's theorem about power sets to prove the inequality.

Extra credit

Prove Wilson's theorem about prime numbers and factorials: If p is an integer greater than 1 , then p is a prime number if and only if

$$
(p-1)!\equiv-1 \quad \bmod p
$$

Remark

A so-called Wilson prime is a prime number p that satisfies the stronger inequality $(p-1)!\equiv-1 \bmod p^{2}$. Although only three examples of Wilson primes are known $(5,13$, and 563$)$, there is a conjecture that infinitely many Wilson primes exist.

Wilson's theorem is named after the eighteenth-century English mathematician John Wilson, but already around the year 1000 the theorem was known to the famous middle-Eastern scientist Abu Ali Hasan ibn al-Haitham, commonly known as Alhazen.

