Exercise 9 on page 14

Your Name

Math 220 assignment due January 24

Here is an annotated statement of the exercise.
A real-valued function $f(x)$ is said to be increasing on the closed interval $[a, b]$ if for all $x_{1}, x_{2} \in[a, b]$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$.
[Notice that the word "all" corresponds to a universal quantifier. The setmembership symbol \in should not be confused with the quantifier symbol \exists. The symbolic expression "for all $x_{1}, x_{2} \in[a, b]$ " could be verbalized as "for all x_{1} and x_{2} in the interval $[a, b]$ " or "for all x_{1} and x_{2} belonging to the interval $[a, b]$."]
(a) Write the negation of this definition. [What the author really means is, "Write the definition of the negation." In other words, write a statement starting, "A real-valued function $f(x)$ is said to be not increasing on the closed interval [a, b] if"]
(b) Give an example of an increasing function on [0, 1]. [Here you are supposed to exhibit an example of a function that fits the original definition: namely, write "An example of a function that is increasing on the interval $[0,1]$ is $f(x)=$"]
(c) Give an example of a function that is not increasing on [0, 1]. [Here you are supposed to exhibit a function that fits your answer to part (a): namely, write "An example of a function that is not increasing on $[0,1]$ is $f(x)=\ldots$." Notice that the words "not increasing" have a different meaning from "decreasing": a decreasing function is not increasing, but some functions are neither increasing nor decreasing.]

