True or false?

This sentence is false.
Apparently, the sentence is both true and false; or neither.
So we have to be careful about language.

Introductions

-Who are you?
-What do you do for fun?

- When will you graduate?
- Where are you from?
-Why are you studying mathematics?

Vocabulary for today

- Statement
- Open sentence
- Universal quantifier
- Existential quantifier
- Negation

Statements

A statement is a sentence that is either true or false.
Examples:

- The number π is irrational.
- The instructor's shirt is red.

Non-examples:

- Are we having fun yet? (questions are not statements)
- Go for the gold.
- $x^{2}=2 x$
(an open sentence that becomes a statement only when a specific value is substituted for the variable)

Quantifiers

Example: "there exists an x for which $x^{2}=2 x$ " is a quantified statement with an existential quantifier.
In symbols, $\exists x x^{2}=2 x$.
(True statement: $x=0$ works, and so does $x=2$.)
Example: "For every $x, x^{2}=2 x$ " is a quantified statement with a universal quantifier.
In symbols, $\forall x x^{2}=2 x$.
(False statement: the equation is wrong when $x=1$, for example.)
Examples with implicit quantifiers:

- Aggies love traditions. (implicit universal quantifier)
- Some weeks have eight days. (implicit existential quantifier)

Negation

If $P(x)$ is the open sentence $x^{2}=2 x$, then the negation is $x^{2} \neq 2 x$, symbolized by $\neg P(x)$.
Interaction of negation with quantifiers:
$\neg\left(\exists x x^{2}=2 x\right)$ means the same as $\forall x x^{2} \neq 2 x$.
Similarly, $\neg\left(\forall x x^{2}=2 x\right)$ means the same as $\exists x x^{2} \neq 2 x$.

Examples from page 12

- The area of a rectangle is its length times its width. (Universal: For every rectangle, the area is the length times the width.)
- A triangle may be equilateral.
(Existential: There exists an equilateral triangle.)

