Building complicated statements from simpler ones

- ► Example: "Today is Tuesday, and it's sunny." *P* and *Q*, symbolized by *P* ∧ *Q*, is conjunction.
- ► Example: "Today is Tuesday, or it's sunny." P or Q, symbolized by P ∨ Q, is disjunction.

In mathematics, "or" is inclusive: one or the other or possibly both.

► The open sentence |x| < 5 is a conjunction: namely, x < 5 and x > -5. Negation is the disjunction x > 5 or x < -5.</p>

The open sentence |x| > 5 is a disjunction: namely, either

x > 5 or x < -5.

Negating compound statements

- ¬(P ∧ Q) means "it is not the case that both P and Q are true," so either P or Q is false (or both are false), that is, (¬P) ∨ (¬Q).
- ▶ $\neg(P \lor Q)$ means "not either P or Q is true," that is, neither P nor Q is true, so $(\neg P) \land (\neg Q)$.

Truth tables

A way to understand a complicated statement, like

$$(P \land \neg Q) \lor (Q \land \neg P),$$

is to make a table of truth values.

Р	Q	$\neg Q$	$\neg P$	$(P \land \neg Q)$	$(Q \land \neg P)$	$(P \land \neg Q) \lor (Q \land \neg P)$
Т	Т	F				
Т	F	Т				
F	Т	F				
F	F	Т				

The completed table

This table represents "exclusive or": $(P \land \neg Q) \lor (Q \land \neg P)$ is true when exactly one of P and Q is true.

Assignment

Exercises 8 and 14 on pages 26-27 to hand in next time.