## Help

- My office hour is Monday, Wednesday, and Friday afternoons, 2:00-3:00, in Blocker 601L.
- The posted Help Session is Monday and Tuesday evenings, 6:00-8:00, in Blocker 111.
- The secret help session with an undergraduate mentor is Monday and Wednesday evenings, 5:30-8:00, in Blocker 506A.


## Some

In ordinary English, the word "some" means "at least two, but not all."
In math speak, "some" means "at least one (and possibly all)."

## Follow up on Exercises 8 and 14

8. Negate the statement "Exactly one of the integers $n$ or $m$ is odd."
Rephrased: "Either $n$ is odd and $m$ is even; or $n$ is even and $m$ is odd; (but not both-the two cases are mutually exclusive, so they actually cannot both happen)."
The original statement is exclusive or: "Either $n$ is odd $\oplus m$ is odd."
Negation: "Both $n$ and $m$ are even; or both $n$ and $m$ are odd." 14. Characterize all real numbers such that $x>1$ or $|x|<3$. Solution: One characterization is $x>-3$.

## Logical equivalence

Two statements are logically equivalent if they have the same truth table.
Example: $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge(P \vee R)$ are logically equivalent.

## Check with a truth table

Verify that $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge(P \vee R)$ are logically equivalent.

| $P$ | $Q$ | $R$ | $Q \wedge R$ | $P \vee Q$ | $P \vee R$ | $P \vee(Q \wedge R)$ | $(P \vee Q) \wedge(P \vee R)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T |  |  |  |  |  |
| T | T | F |  |  |  |  |  |
| T | F | T |  |  |  |  |  |
| T | F | F |  |  |  |  |  |
| F | T | T |  |  |  |  |  |
| F | T | F |  |  |  |  |  |
| F | F | T |  |  |  |  |  |
| F | F | F |  |  |  |  |  |

## The completed truth table

| $P$ | $Q$ | $R$ | $Q \wedge R$ | $P \vee Q$ | $P \vee R$ | $P \vee(Q \wedge R)$ | $(P \vee Q) \wedge(P \vee R)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T | T | T |
| T | T | F | F | T | T | T | T |
| T | F | T | F | T | T | T | T |
| T | F | F | F | T | T | T | T |
| F | T | T | T | T | T | T | T |
| F | T | F | F | T | F | F | F |
| F | F | T | F | F | T | F | F |
| F | F | F | F | F | F | F | F |

## More terminology

- An always true statement is a tautology. Example: $P \vee \neg P$.
- An always false statement is a contradiction. Example: $P \wedge \neg P$.


## Implication

The following sentences are synonyms.

- If $P$ is true, then $Q$ is true.
- $P \Longrightarrow Q$.
- $P$ implies $Q$.
- If $P$ then $Q$.

| $P$ | $Q$ | $P \Longrightarrow Q$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

$P$ is the hypothesis or premise or assumption, and $Q$ is the conclusion.

## Negating an implication



## Assignment to hand in next time

- Revise and correct the assignment originally due today.
- Exercise D3 on page 28.
- Exercise 12 on page 36.

