Help

- ► My office hour is Monday, Wednesday, and Friday afternoons, 2:00–3:00, in Blocker 601L.
- ► The posted Help Session is Monday and Tuesday evenings, 6:00–8:00, in Blocker 111.
- The secret help session with an undergraduate mentor is Monday and Wednesday evenings, 5:30–8:00, in Blocker 506A.

In ordinary English, the word "some" means "at least two, but not all." In math speak, "some" means "at least one (and possibly all)."

Follow up on Exercises 8 and 14

8. Negate the statement "Exactly one of the integers n or m is odd."

Rephrased: "Either n is odd and m is even; or n is even and m is odd; (but not both—the two cases are mutually exclusive, so they actually cannot both happen)."

The original statement is exclusive or: "Either n is odd \oplus m is odd."

Negation: "Both n and m are even; or both n and m are odd."

14. Characterize all real numbers such that x > 1 or |x| < 3.

Solution: One characterization is x > -3.

Logical equivalence

Two statements are logically equivalent if they have the same truth table.

Example: $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent.

Check with a truth table

Verify that $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent.

Ρ	Q	R	$Q \wedge R$	$P \lor Q$	$P \lor R$	$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$
Т	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

The completed truth table

Р	Q	R	$Q \wedge R$	$P \lor Q$	$P \lor R$	$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	T	F	F	Т	T	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	F	F	F
F	F	Т	F	F	Т	F	F
F	F	F	F	F	F	F	F

More terminology

- An always true statement is a *tautology*. Example: P ∨ ¬P.
- An always false statement is a contradiction. Example: P ∧ ¬P.

Implication

The following sentences are synonyms.

- ▶ If *P* is true, then *Q* is true.
- $\blacktriangleright P \implies Q.$
- ▶ P implies Q.
- ▶ If *P* then *Q*.

P is the hypothesis or premise or assumption, and Q is the conclusion.

Negating an implication

Ρ	Q	$P \implies Q$	$\neg(P \implies Q)$
Т	Т	Т	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

Assignment to hand in next time

- Revise and correct the assignment originally due today.
- Exercise D3 on page 28.
- Exercise 12 on page 36.