Sets

Vocabulary:

- element
- subset
- complement
- empty set
- ► cardinality
- interval

Some examples of sets

- **Z** or \mathbb{Z} , the integers (0, ±1, ±2, ...)
- ▶ Z^+ or \mathbb{Z}^+ or \mathbb{N} , the positive integers (natural numbers)
- **Q** or \mathbb{Q} , the rational numbers, like 2/3 and 17/220
- R or ℝ, the real numbers (includes rational numbers and also some other numbers like π, e, φ = 1+√5/2)
- ▶ **C** or \mathbb{C} , the complex numbers, like 2 + 3i where $i^2 = -1$
- \varnothing , the empty set, not to be confused with Greek letter ϕ

Elements

 $a \in A$ means "a is an element of A." Do not confuse set membership \in with the Greek letter ϵ . $a \notin A$ means "a is not an element of A."

Set-builder notation:

- { x ∈ R | x² − 1 < 0 } or { x ∈ ℝ : x² − 1 < 0 }
 is the set of real numbers between −1 and 1,
 the open interval (−1, 1).
 </p>
- ► [-1, 1] is the *closed interval* of real numbers between -1 and 1 inclusive.

More intervals

- [-1,1) half-open, half-closed interval
- (a, ∞) means the *unbounded* open interval $\{x \in \mathbf{R} \mid a < x\}$.

Subsets

 $A \subseteq B$, "A is a subset of B," means that every element of A is also an element of B.

 $A \subset B$, "A is a proper subset of B," means that A is a subset of B but $A \neq B$. Sometimes written $A \subsetneq B$.

Some authors do not distinguish between the symbols \subset and $\subseteq.$ So $\textbf{Z} \subset \textbf{Q} \subset \textbf{R} \subset \textbf{C}.$

Question: is $\emptyset \subseteq \mathbb{Z}$? Yes, because there is no element in the empty set to contradict the statement.

Set complements

B - A or $B \setminus A$ means $\{x \in B \mid x \notin A\}$, "the complement of A in B."

 $\mathbf{Z} \setminus \mathbf{Z}^+$ is the set of nonpositive integers.

 $\boldsymbol{\mathsf{Q}}-\boldsymbol{\mathsf{R}}=\varnothing$

When *B* is an implicit universal set, the complement of *A* can be written \overline{A} or A' or A^c .

Cardinality

When A is a finite set, the number of elements of A is the *cardinality* of A, written |A|.

Equality of sets

When A and B are sets, to say that A = B is equivalent to the conjunction

$$(A \subseteq B) \land (B \subseteq A).$$