Sets

Vocabulary:

- element
- subset
- complement
- empty set
- cardinality
- interval

Some examples of sets

- \mathbf{Z} or \mathbb{Z}, the integers $(0, \pm 1, \pm 2, \ldots)$
- \mathbf{Z}^{+}or \mathbb{Z}^{+}or \mathbb{N}, the positive integers (natural numbers)
- \mathbf{Q} or \mathbb{Q}, the rational numbers, like $2 / 3$ and $17 / 220$
- \mathbf{R} or \mathbb{R}, the real numbers (includes rational numbers and also some other numbers like $\pi, e, \phi=\frac{1+\sqrt{5}}{2}$)
- \mathbf{C} or \mathbb{C}, the complex numbers, like $2+3 i$ where $i^{2}=-1$
- \varnothing, the empty set, not to be confused with Greek letter ϕ

Elements

$a \in A$ means " a is an element of A."
Do not confuse set membership \in with the Greek letter ϵ. $a \notin A$ means " a is not an element of A."

Set-builder notation:

- $\left\{x \in \mathbf{R} \mid x^{2}-1<0\right\}$ or $\left\{x \in \mathbb{R}: x^{2}-1<0\right\}$ is the set of real numbers between -1 and 1 , the open interval $(-1,1)$.
- $[-1,1]$ is the closed interval of real numbers between -1 and 1 inclusive.

More intervals

- $[-1,1)$ half-open, half-closed interval
- (a, ∞) means the unbounded open interval $\{x \in \mathbf{R} \mid a<x\}$.

Subsets

$A \subseteq B$, " A is a subset of B," means that every element of A is also an element of B.
$A \subset B, " A$ is a proper subset of B, " means that A is a subset of B but $A \neq B$. Sometimes written $A \subsetneq B$.
Some authors do not distinguish between the symbols \subset and \subseteq. So $\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$.
Question: is $\varnothing \subseteq \mathbf{Z}$? Yes, because there is no element in the empty set to contradict the statement.

Set complements

$B-A$ or $B \backslash A$ means $\{x \in B \mid x \notin A\}$, "the complement of A in B."
$\mathbf{Z} \backslash \mathbf{Z}^{+}$is the set of nonpositive integers.
$\mathbf{Q}-\mathbf{R}=\varnothing$
When B is an implicit universal set, the complement of A can be written \bar{A} or A^{\prime} or A^{c}.

Cardinality

When A is a finite set, the number of elements of A is the cardinality of A, written $|A|$.

Equality of sets

When A and B are sets, to say that $A=B$ is equivalent to the conjunction

$$
(A \subseteq B) \wedge(B \subseteq A)
$$

