Union \bigcup and intersection \bigcap

- $\{2,4,6\} \cup \{4,6,8\} = \{2,4,6,8\}$
- ${2,4,6} \cap {4,6,8} = {4,6}$
- $A \cup B$ means the disjunction $\{x \mid (x \in A) \lor (x \in B)\}$
- $A \cap B$ means the conjunction $\{x \mid (x \in A) \land (x \in B)\}$

If the intersection $A \cap B$ is the empty set, then A and B are called *disjoint* sets.

Commutative, associative, and distributive laws

Union and intersection satisfy these properties. For example, $A \cup B = B \cup A$ (commutative law), $(A \cap B) \cap C = A \cap (B \cap C)$ (associative law), $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

De Morgan's laws for complements

Augustus De Morgan (1806–1871)

- Complement of A ∪ B is the intersection of the complement of A and the complement of B.
- Similarly, the complement of A ∩ B is the union of the complement of A and the complement of B.

Spelling lesson

- Complement of a set: all the elements not in the set.
- Compliment of a set: "You are an intelligent set!"