Union \bigcup and intersection \bigcap

- $\{2,4,6\} \cup\{4,6,8\}=\{2,4,6,8\}$
- $\{2,4,6\} \cap\{4,6,8\}=\{4,6\}$
- $A \cup B$ means the disjunction $\{x \mid(x \in A) \vee(x \in B)\}$
- $A \cap B$ means the conjunction $\{x \mid(x \in A) \wedge(x \in B)\}$

If the intersection $A \cap B$ is the empty set, then A and B are called disjoint sets.

Commutative, associative, and distributive laws

Union and intersection satisfy these properties.
For example, $A \cup B=B \cup A$ (commutative law),
$(A \cap B) \cap C=A \cap(B \cap C)$ (associative law),
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

De Morgan's laws for complements

Augustus De Morgan (1806-1871)

- Complement of $A \cup B$ is the intersection of the complement of A and the complement of B.
- Similarly, the complement of $A \cap B$ is the union of the complement of A and the complement of B.

Spelling lesson

- Complement of a set: all the elements not in the set.
- Compliment of a set: "You are an intelligent set!"

