Reminder

Exam 1 takes place in class on Tuesday, February 21. The exam covers Chapters 1 and 2.

Building new sets from old

- Cartesian product
- Power set
- Partitions

Cartesian product $A \times B$

René Descartes (1596–1650)

 $A \times B$ means the set of ordered pairs (a, b), where $a \in A$ and $b \in B$.

Example: $A = \{1, 2\}, B = \{\alpha, \beta\}$; then $A \times B = \{(1, \alpha), (1, \beta), (2, \alpha), (2, \beta)\}.$ Note: $A \times B \neq B \times A.$ Cardinality works: $|A \times B| = |A| \times |B|.$ When A is a set, the *power set* P(A) is the set of all subsets of A.

Example:
$$A = \{4, 5, 7\}$$
.
Power set
 $\mathbf{P}(A) = \{\{4\}, \{7\}, \{5\}, \{4, 7\}, \{4, 5\}, \{5, 7\}, \{4, 5, 7\}, \varnothing\}$.
In general, $|\mathbf{P}(A)| = 2^{|A|}$.

Partitions

A partition of a set A is a collection of non-empty subsets of A that are pairwise disjoint and whose union equals A. Example: $A = \{4, 5, 7\}$. One partition is the pair of subsets $\{5, 7\}$ and $\{4\}$. Another partition is $\{5\}$ and $\{4, 7\}$. Another partition is $\{7\}$ and $\{4, 5\}$. Another partition is three singletons: $\{4\}$, $\{5\}$, and $\{7\}$. Another partition is the whole set itself.

Pigeonhole principle (Dirichlet's drawer principle)

Peter Gustav Lejeune Dirichlet (1805–1859)

Example: In a set of 8 people, some 2 of them must have been born on the same day of the week.

Example: In a set of 15 people, at least 3 must have been born on the same day of the week.