## Reminder

Exam 1 takes place in class on Tuesday, February 21. The exam covers Chapters 1 and 2.

## Building new sets from old

- Cartesian product
- Power set
- Partitions


## Cartesian product $A \times B$



René Descartes
(1596-1650)
$A \times B$ means the set of ordered pairs $(a, b)$, where $a \in A$ and $b \in B$.
Example: $A=\{1,2\}, B=\{\alpha, \beta\}$; then
$A \times B=\{(1, \alpha),(1, \beta),(2, \alpha),(2, \beta)\}$.
Note: $A \times B \neq B \times A$.
Cardinality works: $|A \times B|=|A| \times|B|$.

## Power set $\mathbf{P}(A)$

When $A$ is a set, the power set $\mathbf{P}(A)$ is the set of all subsets of $A$.
Example: $A=\{4,5,7\}$.
Power set
$\mathbf{P}(A)=\{\{4\},\{7\},\{5\},\{4,7\},\{4,5\},\{5,7\},\{4,5,7\}, \varnothing\}$.
In general, $|\mathbf{P}(A)|=2^{|A|}$.

## Partitions

A partition of a set $A$ is a collection of non-empty subsets of $A$ that are pairwise disjoint and whose union equals $A$.
Example: $A=\{4,5,7\}$.
One partition is the pair of subsets $\{5,7\}$ and $\{4\}$.
Another partition is $\{5\}$ and $\{4,7\}$.
Another partition is $\{7\}$ and $\{4,5\}$.
Another partition is three singletons: $\{4\},\{5\}$, and $\{7\}$.
Another partition is the whole set itself.

## Pigeonhole principle (Dirichlet's drawer principle)



Example: In a set of 8 people, some 2 of them must have been born on the same day of the week.
Example: In a set of 15 people, at least 3 must have been born on the same day of the week.

