Vocabulary

- function
- domain
- codomain
- image
- inverse image
- graph

Functions

A function (also called a mapping) consists of three things:

1. a set A, called the domain,
2. a set B, called the codomain,
3. an assignment of each element of A to some element of B.

Standard notation for a function f from domain A to codomain B is $f: A \rightarrow B$.

Examples

- $A=\mathbf{Z}, B=\mathbf{R}, f(n)=\sqrt{n^{2}+1}$
- $A=$ set of Aggies, $B=\mathbf{Z}, f(a)=$ the Aggie's age in years.
- $A=$ set of Aggies, $B=\mathbf{C}, f(a)=$ the Aggie's age in years.

The last two examples are different functions because they have different codomains.

Image

The image (or range) of a function $f: A \rightarrow B$ means $\{b \in B \mid \exists a \in A$ such that $f(a)=b\}$.
Example: $A=$ people in this room, $B=\mathbf{Z}, f(a)=$ number of the birth month.
Image is $\{1,2,3,4,5,6,8,9,10,11,12\}$

Inverse image

Suppose $f: A \rightarrow B$ is a function with domain A and codomain B. If C is a subset of the codomain, then the inverse image of C is the set $\{a \in A \mid f(a) \in C\}$.
In the birthday month example, the inverse image of $\{6,7\}$ is \{Dr. Boas\}.
Example. $A=\mathbf{R}, B=\mathbf{R}, f(x)=x^{2}, C=$ even integers. The inverse image of C is $\{0, \pm \sqrt{2}, \pm 2, \pm \sqrt{6}, \ldots\}$.

Notation

If $f: A \rightarrow B$ is a function, and J is a subset of A, then $f(J)$ means $\{f(j) \mid j \in J\}$, the image of J.
If R is a subset of B, then the inverse image is $f^{-1}(R)$, that is, $\{a \in A \mid f(a) \in R\}$.

