Exam results

- Grading: 14 points for each of 7 problems, plus 2 points for free
- Mean 84, median 85
- Two scores of 100
- Congratulations on all your hard work!

Vocabulary today

- surjective
- injective
- bijective
- permutation

Surjective

If $f: A \rightarrow B$ is a function, then f is surjective (adjective) or a surjection (noun) if the image fills up the whole codomain.

Example. $A=\mathbf{R}, B=\mathbf{R}, f(x)=x$ (the identity function).
$A=\mathbf{R}=B . f(x)=x^{2}$. Not surjective, because all negative numbers are missing from the image.
$A=\mathbf{R}, B=$ the real numbers that are bigger than or equal to zero, $f(x)=x^{2}$. Now the image equals the codomain, so the new function is surjective.
$A=\mathbf{Z}, B=$ positive integers $Z^{+}, f(n)=|n|$. Not a well defined function, because $f(0)$ is not an element of the codomain.
One possible fix is to change the domain A to all nonzero integers,
$\mathbf{Z}-\{0\}$. Then the function is well defined and surjective.

Injective

If $f: A \rightarrow B$ is a function, then f is injective (adjective) or an injection (noun) if distinct elements of the domain have distinct images.
That is, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
The identity function is both injective and surjective.
Example. $A=\mathbf{Z}-\{0\}, B=\mathbf{Z}^{+}, f(n)=|n|$. This function is surjective but not injective.

Bijective

If $f: A \rightarrow B$ is a function, then f is bijective (adjective) or a bijection (noun) if f is simultaneously injective and surjective.

If $A=B$, then a bijection can be called a permutation.

