Recap from last time

A function f with domain A and codomain B is

- surjective if the image equals the codomain (you can also say that f is onto)
- *injective* if every two different elements of the domain have different images: ∀a₁ ∀a₂ if a₁ ≠ a₂ then f(a₁) ≠ f(a₂). Logically equivalent is the contrapositive: if f(a₁) = f(a₂) then a₁ = a₂. (you can also say that f is one-to-one)
- bijective if f is simultaneously injective and surjective (you can also say that f is a one-to-one correspondence)

Composite functions

What is the structure of $(\sin x)^2$?

If $f: A \to B$, and $g: B \to C$, then the composition of these two functions has domain A and codomain C and is given by the formula g(f(a)), abbreviated by $g \circ f$, or (in our textbook) simply gf.

Composing more functions gives more elaborate examples, like $ln(1 + (\sin x)^2)$, written *khgf* or $k \circ h \circ g \circ f$.

The algebra of function composition

Commutative law? Is $f \circ g$ the same as $g \circ f$? No, not in general. $f: A \to B, g: B \to C$. One composition $g \circ f$ makes sense, but the other one $f \circ g$ does not make sense: the domains and codomains do not match up.

Even if both compositions make sense, they need not agree: $(\sin x)^2$ is different from $\sin(x^2)$

Associative law? Is $(h \circ g) \circ f$ the same as $h \circ (g \circ f)$? $f: A \to B, g: B \to C, h: C \to D$ Where does a typical element *a* go? $(h \circ g) \circ f$ sends *a* to the same place that $h \circ g$ sends f(a), namely, to h(g(f(a))). And the other function sends *a* to the same image.

So the associative law does hold for function composition.

The identity function $i: A \rightarrow A$ has the property that i(a) = a for every a in the domain A.

The identity function acts as an identity element for function composition. That is, $f \circ i = f = i \circ f$.

If f and g are two functions for which $g \circ f$ makes sense and equals the identity function, then g and f are called *inverse functions*. Example. A = B = positive real numbers. $f(x) = x^2$. The inverse function is $g(x) = \sqrt{x}$. Example. $A = B = \mathbf{R}$. $f(x) = x^2$. There is no inverse function, because f(5) = f(-5), so there is not a unique way to undo the function.

To have an inverse function, a function must be bijective.