Recap from last time

A function f with domain A and codomain B is

- surjective if the image equals the codomain (you can also say that f is onto)
- injective if every two different elements of the domain have different images: $\forall a_{1} \forall a_{2}$ if $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. Logically equivalent is the contrapositive: if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.
(you can also say that f is one-to-one)
- bijective if f is simultaneously injective and surjective (you can also say that f is a one-to-one correspondence)

Composite functions

What is the structure of $(\sin x)^{2}$?
If $f: A \rightarrow B$, and $g: B \rightarrow C$, then the composition of these two functions has domain A and codomain C and is given by the formula $g(f(a))$, abbreviated by $g \circ f$, or (in our textbook) simply $g f$.

Composing more functions gives more elaborate examples, like $\ln \left(1+(\sin x)^{2}\right)$, written khgf or $k \circ h \circ g \circ f$.

The algebra of function composition

Commutative law? Is $f \circ g$ the same as $g \circ f$? No, not in general. $f: A \rightarrow B, g: B \rightarrow C$. One composition $g \circ f$ makes sense, but the other one $f \circ g$ does not make sense: the domains and codomains do not match up.
Even if both compositions make sense, they need not agree: $(\sin x)^{2}$ is different from $\sin \left(x^{2}\right)$

Associative law? Is $(h \circ g) \circ f$ the same as $h \circ(g \circ f)$? $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$
Where does a typical element a go?
$(h \circ g) \circ f$ sends a to the same place that $h \circ g$ sends $f(a)$, namely, to $h(g(f(a)))$.
And the other function sends a to the same image.
So the associative law does hold for function composition.

The identity function $i: A \rightarrow A$ has the property that $i(a)=a$ for every a in the domain A.
The identity function acts as an identity element for function composition. That is, $f \circ i=f=i \circ f$.

If f and g are two functions for which $g \circ f$ makes sense and equals the identity function, then g and f are called inverse functions.
Example. $A=B=$ positive real numbers. $f(x)=x^{2}$. The inverse function is $g(x)=\sqrt{x}$.
Example. $A=B=\mathbf{R} . f(x)=x^{2}$. There is no inverse function, because $f(5)=f(-5)$, so there is not a unique way to undo the function.

To have an inverse function, a function must be bijective.

