Vocabulary today

- binary operation on a set
- ► a set being *closed* under a binary operation

Binary operation

A binary operation on a set A is a special type of function: a function whose domain is the Cartesian product $A \times A$ and whose codomain is A.

Instead of writing f(a, b), one often writes a * b.

Examples. $A = \mathbf{Z}$, a * b = a + b. Addition on the integers is a binary operation. Multiplication is another example. Division is not an example, because a/b is not necessarily an integer. Example. $A = \mathbf{R} - \{0\}$. Division is a binary operation on this set. Example. $A = \mathbf{Z}^+$ (positive integers), $a * b = a^b$. Properties than a binary operation might or might not have

- commutative property: a * b = b * a (holds for addition and multiplication but not for exponentiation or division)
- associative property: (a * b) * c = a * (b * c) (holds for addition and multiplication but not for exponentiation or division)
- ► identity element: a special element e such that a * e = a = e * a for every element a of the set A.
- If there is an identity element, then the question of inverse elements arises: does there exist an element a⁻¹ such that a * a⁻¹ = e = a⁻¹ * a ?
 If * is addition, then a⁻¹ is −a.

Closure

Example. The binary operation + is defined on the integers. Restrict attention to the even integers. Does + define a binary operation on the even integers? Yes.

Restrict attention to the odd integers. Does + define a binary operation on the odd integers? No, because the sum of two odd integers is no longer odd.

If * is a binary operation on a set A, and S is a subset of A, then S is called *closed* under the binary operation * if for every s_1 and s_2 in S, the element $s_1 * s_2$ is still in S.