Reminder

Exam 2 takes place next Tuesday, March 28.
The exam covers Chapters 3 and 4 (functions, binary operations, and relations).

Vocabulary today

- relation
- reflexive
- symmetric
- antisymmetric
- transitive
- equivalence relation
- equivalence class
- partial ordering
- linear ordering

Functions and relations

If $f: A \rightarrow A$ is a function, then each element a is paired with exactly one element $f(a)$.
A relation on a set A allows each element a to be paired with multiple elements (or with none at all).

Example (the birth-year relation)

$A=$ the set of Aggies; two elements of the set are related if they have the same birth year.

Formal definition of a relation

A relation on a set A is a subset of the Cartesian product $A \times A$.
Notation: $a R b$ means a is related to b. In other words, the ordered pair (a, b) belongs to the relation.

Four properties that a relation might or might not have

- reflexive: aRa for every element a of the set A

Example: birth year

- symmetric: $a R b$ if and only if $b R a$

Example: birth year

- transitive: if $a R b$ and $b R c$ then $a R c$

Example: birth year

- antisymmetric: if $a R b$ and $b R a$ then $a=b$ Example: $A=\mathbf{Z}$, relation \leq

Exercise

Are the following relations on \mathbf{Z} reflexive? symmetric? transitive? antisymmetric?

1. $a R b$ if $a \geq b$
2. $a R b$ if $a<b$
3. clock arithmetic: $a R b$ if a and b differ by a multiple of 12
4. parity: $a R b$ if both a and b are even, or both a and b are odd

Answers:

1. reflexive, transitive, antisymmetric
2. transitive and antisymmetric (for a subtle reason)
3. reflexive, symmetric, and transitive
4. reflexive, symmetric, and transitive

Equivalence relations

A relation that is simultaneously reflexive, symmetric, and transitive is called an equivalence relation.

Example

The last two examples: clock arithmetic and parity.

Equivalence classes

If R is an equivalence relation, then one usually writes $a \sim b$ instead of $a R b$.
And one says " a is equivalent to b " instead of " a is related to b."
The set of all elements equivalent to a is the equivalence class of a, usually written [a].

Example: for clock arithmetic, $[7]=\{\ldots,-17,-5,7,19,31, \ldots\}$. Notice [7] $=[-5]$.

Partial ordering

A relation that is simultaneously reflexive, antisymmetric, and transitive is called a partial ordering.

Example

Suppose $A=\{1,2,3,4\}$, and define a relation on $\mathbf{P}(A)$ (the power set of A) by $X R Y$ if $X \subseteq Y$.
If $X=\{1,2\}$ and $Y=\{3,4\}$, then neither set is related to the other. Hence the term partial ordering.

Linear ordering

A partial ordering is called a linear ordering if every two elements can be compared: either $a R b$ or $b R a$.

Example
$A=\mathbf{R}$ with the order relation \leq

