Announcements

- The peer editing assignment is due in class on April 4 (Tuesday).
- No office hour on March 31 (Friday) or April 3 (Monday). I will be away from campus.

The integers are more complicated than they seem

Two famous unsolved problems about prime numbers:

- Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two prime numbers. True or false? Examples: $12=5+7,20=3+17=7+13$.
- Twin prime conjecture: There are infinitely many prime numbers p for which $p+2$ is prime too. True or false? Examples: $17+2=19,29+2=31$.

Algebraic properties of the integers

\mathbb{Z} has two binary operations (plus and times) that are commutative and associative, and multiplication distributes over addition; there is an additive identity 0 , and every element has an additive inverse; there is a multiplicative identity 1 (but not every element has a multiplicative inverse).

These properties are Axioms A1 to A8 on pages 151-152.
Are there other number systems that satisfy these properties? Yes, the rational numbers \mathbb{Q} satisfy these properties and more: every nonzero element has a multiplicative inverse.

Example of a deduction from the algebraic axioms

Interaction of the additive identity with multiplication: $e \cdot b=e$ for every element b, where e is the additive identity element.

Proof.

$a+e=a$ for every element a, by definition of additive identity. In particular, $e+e=e$.
Then $(e+e) \cdot b=e \cdot b$.
By the distributive property, $e \cdot b=(e \cdot b)+(e \cdot b)$.
Add the additive inverse of $e \cdot b$ to both sides:
$-(e \cdot b)+(e \cdot b)=-(e \cdot b)+((e \cdot b)+(e \cdot b))$.
By the associative property and the definition of additive inverse, $e=e+(e \cdot b)$. Then by the definition of additive identity, $e=e \cdot b$.

