Announcement

Freshman/Sophomore Math Contest Monday, April 10
Blocker 624
7:00-9:00 PM
Cash prizes!

http://www.math.tamu.edu/undergraduate/fscontest/

Order axioms

Suppose in addition to the algebraic axioms A1-A8 we have a distinguished subset P (for "positive") of nonzero elements that is closed under addition and under multiplication, and the trichotomy property holds: for each element x of the universe either $x=0$ or $x \in P$ or $-x \in P$ (exclusive or).
These properties are A9-A10 in the textbook.

Example

- In the set of integers \mathbb{Z}, the positive set is \mathbb{Z}^{+}, the set $\{1,2,3, \ldots\}$.
- In the set of polynomials, we could take the positive set to be the polynomials whose highest power has a positive coefficient.

A positive subset corresponds to an order relation

Define " $a<b$ " to mean " $b-a$ is an element of the positive set."
And " $b>a$ " means the same thing.
Moreover " $a \leq b$ " means "either $a=b$ or $a<b$."
And " $b \geq a$ " means the same thing.
The relation \leq is a linear ordering.

Example proof using the order relation

Number 5(a) on page 157:
$(a<0) \wedge(b<0) \Longrightarrow a b>0$.
Here is the consensus proof the groups settled on during class.
Proof.
Suppose $(a<0) \wedge(b<0)$.
By trichotomy, $-a>0$ and $-b>0$.
By closure, $(-a)(-b)>0$.
By P5, $(-a)(-b)=a b$, so $a b>0$, as required.
(The proof in the back of the book confusingly cites
Proposition 5.1.4, which does not exist. The authors meant to cite Q2 and Q3 of Proposition 5.1.5.)

Well ordering

A linearly ordered set A is called well ordered if every non-empty subset S has a least element: namely, an element ℓ of S such that $\ell \leq s$ for every element s of S (or $\ell<s$ for every element s of S that is different from ℓ).

Example

- $A=\mathbb{Z}^{+}$(positive integers) is well ordered by \leq(Axiom A11).
- $A=\mathbb{Z}$ (all integers) is not well ordered by \leq.

The subset S consisting of negative integers has no least element.

- $A=$ the set of positive rational numbers. There is no least element because $\ell / 2<\ell$.

