An example about prime numbers

Suppose $f(n)=n^{2}+n+41$. Let's make a table of some values.

n	1	2	3	4	5	6
$f(n)$	43	47	53	61	71	83

When n is a positive integer, is $f(n)$ always a prime number? No, $f(41)$ is divisible by 41 , hence is not prime.

How can we prove that a statement about positive integers is always true?

Example of the method of mathematical induction

How to prove that $n<2^{n}$ for every positive integer n ?
If there were a counterexample value of n, then by the well-ordering principle, there would be a smallest counterexample, say m.
Evidently $1<2^{1}$, so $m>1$. Let k denote $m-1$. Since k is a positive integer smaller than the least counterexample, $k<2^{k}$. Then $k+1<2^{k}+1=2^{k}+2^{0}<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}$. But $k+1=m$, so m is not a counterexample after all.
The contradiction shows that there cannot be a counterexample, so the inequality does hold for every positive integer.

Mathematical induction: the general strategy

To prove that a statement $P(n)$ holds for every positive integer n :

1. Prove that $P(1)$ is true (the basis step).
2. Prove that the implication $P(k) \Longrightarrow P(k+1)$ holds for every positive integer k (the induction step).

Taken together, these two steps show that there cannot be a minimal criminal.
Therefore $P(n)$ must be true for every positive integer n.

