Announcement

Math Club Meeting
Tuesday, April 18th, 2017
Blocker 220
7:00-8:00 PM

Agenda:

- officer elections
- food
- a talk by Dr. Florent Baudier

Induction proof of the power rule from calculus

Theorem (Power rule)
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for every positive integer n.
Proof by induction.

1. Basis step. Is $\frac{d}{d x}\left(x^{1}\right)=1 x^{1-1}$? Evidently yes.
2. Induction step. Suppose $\frac{d}{d x}\left(x^{k}\right)=k x^{k-1}$ for a certain positive integer k. Then

$$
\frac{d}{d x}\left(x^{k+1}\right)=\frac{d}{d x}\left(x \cdot x^{k}\right)=x^{k} \frac{d}{d x}(x)+x \frac{d}{d x}\left(x^{k}\right)
$$

by the product rule for derivatives. By the basis step and the induction hypothesis, the right-hand side equals $x^{k} \cdot 1+x \cdot k x^{k-1}$, which simplifies to $(k+1) x^{k}$. Thus the statement for integer k does imply the statement for integer $k+1$.

