All positive integers are interesting. ©

Proof.

1 is interesting (the smallest positive integer)

- 2 is interesting (the smallest prime number)
- 3 is interesting (the smallest odd prime number)

. . .

If there were some uninteresting positive integers, then there would be a smallest one (by the well-ordering principle).

Being the *smallest* dull number, that number would be interesting! Therefore there cannot be any uninteresting numbers after all. \Box

Greatest common divisor

Example

Find the greatest common divisor (gcd) of the two numbers 1333 and 1247.

Solution

Observe that 1333 = 1247 + 86.

This equation implies that every factor of 1247 and 86 is also a factor of 1333, and every factor of 1333 and 1247 is also a factor of 86. Therefore gcd(1333, 1247) = gcd(1247, 86). Keep going with the same idea:

$$1247 = 14 \times 86 + 43$$
,

so $gcd(1247, 86) = gcd(86, 43) = gcd(2 \times 43, 43) = 43$. This method is called the *Euclidean algorithm*.

More on the Euclidean algorithm

Example (continuation)

Find integers x and y (possibly negative) such that 1333x + 1247y = 43.

Solution

Read the previous calculation backward:

$$\begin{array}{l} 43 = 1247 - 14 \times 86 \\ = 1247 - 14 \times (1333 - 1247) \\ = 1333 \times (-14) + 1247 \times 15. \end{array}$$

So x = -14 and y = 15.

Remark

In general, gcd(a, b) is the smallest positive linear combination of the integers a and b. [Theorem 5.3.5]

Often gcd(a, b) is abbreviated simply as (a, b).

So the notation (a, b) can mean three completely different things, depending on context:

- 1. the greatest common divisor of integers a and b
- 2. an ordered pair (a, b), an element of the Cartesian product $A \times B$ of two sets
- 3. an interval (a, b) in the real numbers, $\{x \in \mathbb{R} \mid a < x < b\}$