Announcements

- The final draft of the paper is due today in eCampus.
- The last class meeting is Thursday, April 27.
- The final exam is Thursday, May 4, from 3:00 to 5:00 in the afternoon, in this room. The exam covers
- Chapters 1-4, and
- Sections 5.1-5.4.

As usual, please bring your own paper to the exam.

- Next week, I will hold my usual office hour on Monday and Wednesday afternoons from 2:00 to 3:00.

Unique factorization of integers

Theorem
Every positive integer can be written as a product of prime numbers. The product is unique up to reordering the factors.

Proof of existence, by contradiction, using induction.
Seeking a contradiction, suppose there is some positive integer that cannot be written as a product of primes.
Then there is a least such integer, say m.
Now $m \neq 1$, for 1 equals the empty product!
And m cannot be a prime number, for then m would be the product of a single prime.
So there are positive integers a and b less than m such that the composite integer m equals the product $a b$.
By the minimality of m, both a and b can be written as products of prime numbers.
So their product m can be written as a product of primes.

The uniqueness part of the theorem

Proof by contradiction.
If some positive integer can be written in two distinct ways as a product of primes, then there is a least such integer, say m. So

$$
m=\prod_{j=1}^{k} p_{j}=\prod_{\ell=1}^{n} q_{\ell}
$$

for prime numbers p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{n}.
Since p_{1} divides the product $\prod_{\ell=1}^{n} q_{\ell}$, and p_{1} is prime, p_{1} must divide one of the factors q_{ℓ}. But q_{ℓ} is prime too, so q_{ℓ} must equal p_{1}.
Dividing both products by this common factor p_{1} contradicts the minimality of m.

Greatest common divisor revisited

Example

Find the gcd of 256 and 220.
Solution (our old method)

$$
\begin{aligned}
256 & =220+36 \\
220 & =6 \times 36+4 \\
36 & =9 \times 4
\end{aligned}
$$

so $\operatorname{gcd}(256,220)=4$.
Solution (a new method, using unique factorization) $256=2^{8}$ and $220=2^{2} \times 5 \times 11$, so $\operatorname{gcd}(256,220)=2^{2}$.

