Reminders

- Today is the last class meeting. : 2
- Please fill out the course evaluation form at http://www.math.tamu.edu/.
- The final exam is Thursday, May 4, from 3:00 to 5:00 in the afternoon, in this room. The exam covers
- Chapters 1-4, and
- Sections 5.1-5.4.

As usual, please bring your own paper to the exam.

- Next week, I will hold my usual office hour on Monday and Wednesday afternoons from 2:00 to 3:00.

Follow-up on Exercise 18 in $\S 5.4$

Prove that if a is a positive integer of the form $4 n+3$, then at least one prime divisor of a is of the form $4 n+3$.

Proof by contradiction.
Suppose a has no prime divisor of the form $4 n+3$.
Since a is an odd integer, there is no divisor of a of the form $4 n$ or of the form $4 n+2$.
Therefore every prime divisor of a has the form $4 n+1$.
But the set of integers of the form $4 n+1$ is closed under multiplication: namely,

$$
\left(4 n_{1}+1\right)\left(4 n_{2}+1\right)=16 n_{1} n_{2}+4 n_{1}+4 n_{2}+1=4 n_{3}+1 .
$$

Therefore no integer a of the form $4 n+3$ can be obtained by multiplying primes of the form $4 n+1$.

Review

List the main topics and concepts starting with the letters:

1. a, f, k, p, u
2. b, g, I, q, v
3. c, h, m, r, w
4. d, i, n, s, x
5. e, j, o, t, y, z
