Solution to Exercise 15

We worked in class on Exercise 15 on page 149: If $*$ is a binary operation on a set A, and $*$ is associative, and there exists an identity element e, then define a relation R on A by saying that $a R b$ when there exists an invertible element c such that $b=c^{-1} * a * c$. The goal is to show that R is an equivalence relation, that is, R is reflexive and symmetric and transitive.

The first point to notice is that in view of the existential quantifier, the element c may depend on a and b. The discussion below therefore uses subscripts to distinguish different instances of the element c. A second point to notice: multiplying by c shows that

$$
\begin{equation*}
b=c^{-1} * a * c \quad \text { if and only if } \quad c * b=a * c . \tag{1}
\end{equation*}
$$

Proof of reflexivity The definition of identity element shows that $e * a=a * e$ (both sides are equal to a). Therefore property (1) shows that $a=e^{-1} * a * e$. In other words, $a R a$, for the required element c can be taken to be equal to e in this case. Since this argument holds for an arbitrary element a, the relation is reflexive.

Proof of symmetry If $a R b$, then there is an element c_{1} such that $b=c_{1}^{-1} * a * c_{1}$. Multiplying on the right by c_{1}^{-1} shows that $b * c_{1}^{-1}=c_{1}^{-1} * a$. Rename c_{1}^{-1} as c_{2} and switch the two sides of the equation to obtain that $c_{2} * a=b * c_{2}$. In view of property (1), this equation means that $b R a$.

Thus $a R b$ implies $b R a$ for arbitrary elements a and b, so the relation is symmetric.
Proof of transitivity Usually the property of transitivity is written for elements a, b, and c, but the letter c is reserved in this problem, so consider instead three elements named a, b, and d.

Suppose $a R b$ and $b R d$. Then there exists an element c_{1} such that $b=c_{1}^{-1} * a * c_{1}$, and there exists an element c_{2} such that $d=c_{2}^{-1} * b * c_{2}$. Substitute the first equation into the second equation to see that $d=c_{2}^{-1} *\left(c_{1}^{-1} * a * c_{1}\right) * c_{2}$. Since $*$ is associative, the grouping can be changed to write that $d=\left(c_{2}^{-1} * c_{1}^{-1}\right) * a *\left(c_{1} * c_{2}\right)$.

Associativity also implies that

$$
\left(c_{2}^{-1} * c_{1}^{-1}\right) *\left(c_{1} * c_{2}\right)=c_{2}^{-1} *\left(c_{1}^{-1} * c_{1}\right) * c_{2}=c_{2}^{-1} * e * c_{2}=c_{2}^{-1} * c_{2}=e,
$$

so the inverse of $\left(c_{1} * c_{2}\right)$ is $\left(c_{2}^{-1} * c_{1}^{-1}\right)$. Give $\left(c_{1} * c_{2}\right)$ the shorthand name c_{3}. The final equation of the preceding paragraph can then be rewritten as the statement that $d=c_{3}^{-1} * a * c_{3}$. In other words, $a R d$.

What has been shown is that $a R b \wedge b R d \Rightarrow a R d$ for arbitrary elements a, b, and d. Thus the relation is transitive.

Remark This relation is not just a made-up problem for practice. If you take linear algebra (Math 304 or Math 323), then you will encounter this equivalence relation under the name of similarity. And if you take modern algebra (Math 415), then you will encounter this equivalence relation under the name of conjugacy.

