Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

Notation: The symbol \mathbb{Z} denotes $\{\ldots,-1,0,1,2, \ldots\}$ (the set of all integers), and the symbol \mathbb{N} denotes $\{1,2,3, \ldots\}$ (the set of positive integers).

1. Fill in the blank with the appropriate word: A relation R on a set A is called a partial ordering if the relation R is reflexive, \qquad , and antisymmetric.
2. Suppose $f: \mathbb{Z} \rightarrow \mathbb{N}$ is defined by the property that $f(n)=n^{2}+1$ for each integer n. Let the symbol \mathbb{O} denote the set $\{1,3,5, \ldots\}$ (the odd positive integers). Determine $f^{-1}(\mathbb{O})$ (that is, the inverse image of the set \mathbb{O}).
3. Let R be the relation defined on \mathbb{Z} by saying that a is related to b (in symbols, $a R b$) when the difference $a-b$ is an odd integer. Is this relation an equivalence relation? Explain why or why not.
4. Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ are defined by the properties that $f(n)=n^{2}$ and $g(n)=2^{n}$ for each positive integer n. Let h_{1} denote the composition $f \circ g$, and let h_{2} denote the composition $g \circ f$. Which of the values $h_{1}(4)$ and $h_{2}(3)$ is the larger? Explain how you know.
5. Consider the binary operation $*$ on \mathbb{Z} defined as follows: $m * n=m+n-m n$ when m and n are integers. Is the operation $*$ associative? Explain why or why not.
6. Consider the function $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined as follows:

$$
f(n)= \begin{cases}\frac{n}{2}, & \text { if } n \text { is even } \\ \frac{1-n}{2}, & \text { if } n \text { is odd }\end{cases}
$$

Show that f is a bijection.
7. When $f: A \rightarrow A$ is a function whose domain and codomain are the same set A, there is an associated relation R_{f} on A defined by saying that a is related to b (in symbols, $a R_{f} b$) when $b=f(a)$. Show that symmetry of this relation R_{f} means that the function f is invertible and equal to its inverse function (in symbols, $f=f^{-1}$).

