Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

Notation: The symbol \mathbb{Z} denotes { ..., -1, 0, 1, 2, ... } (the set of all integers), and the symbol \mathbb{N} denotes { 1, 2, 3, ... } (the set of positive integers).

- 1. Fill in the blank with the appropriate word: A relation *R* on a set *A* is called a partial ordering if the relation *R* is reflexive, ______, and antisymmetric.
- 2. Suppose $f : \mathbb{Z} \to \mathbb{N}$ is defined by the property that $f(n) = n^2 + 1$ for each integer *n*. Let the symbol \mathbb{O} denote the set $\{1, 3, 5, ...\}$ (the odd positive integers). Determine $f^{-1}(\mathbb{O})$ (that is, the inverse image of the set \mathbb{O}).
- 3. Let *R* be the relation defined on \mathbb{Z} by saying that *a* is related to *b* (in symbols, *aRb*) when the difference a b is an odd integer. Is this relation an equivalence relation? Explain why or why not.
- 4. Suppose f: N → N and g: N → N are defined by the properties that f(n) = n² and g(n) = 2ⁿ for each positive integer n. Let h₁ denote the composition f ∘ g, and let h₂ denote the composition g ∘ f. Which of the values h₁(4) and h₂(3) is the larger? Explain how you know.
- 5. Consider the binary operation * on \mathbb{Z} defined as follows: m * n = m + n mn when m and n are integers. Is the operation * associative? Explain why or why not.
- 6. Consider the function $f : \mathbb{N} \to \mathbb{Z}$ defined as follows:

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{1-n}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

Show that f is a bijection.

7. When $f : A \to A$ is a function whose domain and codomain are the same set A, there is an associated relation R_f on A defined by saying that a is related to b (in symbols, $aR_f b$) when b = f(a). Show that symmetry of this relation R_f means that the function f is invertible and equal to its inverse function (in symbols, $f = f^{-1}$).