Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Consider the following statement:

Every polynomial of degree 3 has at least one real root.
a) Identify the quantifiers (universal and existential) in the statement.
b) Write the negation of the statement.

Solution. The word "every" indicates a universal quantifier, and the words "at least one" represent an existential quantifier. The negation of the statement is, "Some polynomial of degree 3 has no real root."
2. Let $P(x)$ be the open sentence " $x \in A$," and let $Q(x)$ be the open sentence " $x \in B$." Suppose $A \subseteq B$ (that is, A is a subset of B). Complete the sentence
$Q(x)$ is a condition for $P(x)$
by filling in the blank with the appropriate word ("necessary" or "sufficient").

Solution. $Q(x)$ is a necessary condition for $P(x)$. In other words, a necessary condition for x to be an element of the subset A is that x is an element of B. The condition is not sufficient if B has some elements that are outside A.
3. Rewrite the implication

$$
P \Rightarrow Q
$$

in a logically equivalent form using only the symbols \neg and \wedge (negation and conjunction), the letters P and Q, and parentheses. Explain your reasoning.

Solution. The disjunction $(\neg P) \vee Q$ is logically equivalent to the implication. (Indeed, both statements are false precisely when P is true and Q is false.) Rewrite the disjunction with two canceling negations: namely,

$$
\neg \neg((\neg P) \vee Q) .
$$

Distribute one of the negations, which flips the disjunction to a conjunction:

$$
\neg((\neg(\neg P)) \wedge \neg Q) .
$$

But $\neg(\neg P)$ is equivalent to P, so the answer simplifies to $\neg(P \wedge \neg Q)$.
You can check the answer by writing out a truth table.
4. Consider the following true statement:

If n is an even integer and m is an odd integer, then the product $n m$ is an even integer.
a) Write the contrapositive of the statement. Is it true? Explain why or why not.

Solution. The contrapositive is, "If two integers n and m have an odd product $n m$, then either n is odd or m is even." The contrapositive is logically equivalent to the original true statement, so the contrapositive is true.
You can also see directly that the contrapositive is true, for a product of two integers is odd if and only if both integers are odd. In that case, the disjunction "either n is odd or m is even" is true, since the clause " n is odd" is true.
b) Write the converse of the statement. Is it true? Explain why or why not.

Solution. The converse is, "If the product $n m$ is even, then n is even and m is odd." The converse is a false statement. One counterexample is obtained by taking n to be 1 and m to be 2 .
5. Suppose $A=\left\{n \in \mathbb{Z} \mid n^{3} \geq 5\right\}$, and $B=\{n \in \mathbb{Z} \mid n \geq 0\}$. Which of the two sets $B-A$ (the complement of A in B) and $A-B$ (the complement of B in A) has more elements? Explain your reasoning.

Solution. If n is negative, then so is n^{3}, so the set A contains no negative elements. Also $0^{3}=0<5$ and $1^{3}=1<5$, so the set A does not contain either 0 or 1 . On the other hand, if $n \geq 2$, then $n^{3} \geq 8>5$, so the set A contains all the integers that are greater than or equal to 2 . Accordingly, the complement $B-A$ is the doubleton set $\{0,1\}$, and the complement $A-B$ is the empty set. Thus $B-A$ has more elements than $A-B$.
6. State De Morgan's laws about complements of unions and intersections.

Solution. See Theorem 2.2.4 on page 65 of the textbook.
7. Call a partition of a set uniform if all the subsets that are elements of the partition have the same cardinality as each other. For example, if $A=\{1,2,3\}$, then the set A admits precisely two uniform partitions: namely, the partition into three singleton sets, and the trivial partition whose only element is the set A itself.

How many uniform partitions does the set $\{1,2,3,4\}$ have? Explain your reasoning.

Solution. There are five uniform partitions: one partition into four singletons, and three partitions into two doubletons, and the trivial partition whose only element is A itself.

Examination 1

To see why there are three partitions into two doubletons, observe that the element 1 can be paired with either 2 or 3 or 4 , and the remaining two elements form the complementary doubleton. Here is the complete list of uniform partitions.

$$
\begin{gather*}
\{\{1\},\{2\},\{3\},\{4\}\} \tag{1}\\
\{\{1,2\},\{3,4\}\} \tag{2}\\
\{\{1,3\},\{2,4\}\} \tag{3}\\
\{\{1,4\},\{2,3\}\} \tag{4}\\
\{A\} \tag{5}
\end{gather*}
$$

