Instructions These problems should be viewed as essay questions. Before making a calculation, you should explain in words what your strategy is.

Please write your solutions on your own paper. Each of the 10 problems counts for 10 points.

- 1. Evaluate the iterated integral $\int_0^{\pi/2} \int_0^1 x \cos(xy) \, dy \, dx$.
- 2. Describe the solid whose volume is given by the spherical-coordinate triple integral

$$\int_0^{\pi} \int_0^{\pi} \int_1^2 \rho^2 \sin(\phi) \,\mathrm{d}\rho \,\mathrm{d}\phi \,\mathrm{d}\theta.$$

(You do not need to evaluate the integral.)

- 3. Evaluate the double integral $\iint_D xe^y dA$, where *D* is the region in the first quadrant bounded by the line y = 0, the line x = 1, and the parabola $y = x^2$.
- 4. Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and x + z = 2.
- 5. Rewrite the integral $\int_0^2 \int_0^y \int_0^{y^2} f(x, y, z) dz dx dy$ as an iterated integral in the order dx dy dz.
- 6. Set up an integral for the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies between the plane z = 1 and the plane z = 4. (You do not need to evaluate the integral.)
- 7. Let *D* be the square with vertices (1, 0), (0, 1), (-1, 0), and (0, -1). Rewrite the double integral $\iint_D (x+y)^5 dA$ as an integral with respect to du dv, where u = x + y and v = x y. (You do not need to evaluate the integral.)
- 8. Find the work done by the force field $\vec{F}(x, y) = y^2 \hat{i} + 2xy\hat{j}$ on a particle that moves in a straight line from the point (1, 2) to the point (5, 1).
- 9. Evaluate the line integral $\int_C y \, ds$ when the parametric equations of *C* are $x = t^2$ and y = 2t, where $0 \le t \le 1$.
- 10. What does it mean to say that a vector field \vec{F} is a *conservative* vector field?

Math 221

Examination 2 Several Variable Calculus

Optional bonus problem for extra credit

Math 221

Find the volume of an egg whose eggshell has the equation

$$\frac{x^2}{8} + \frac{y^2}{5} + \frac{z^2}{3} = 1.$$

Spring 2013