Math 221 Quiz 10 Several Variable Calculus

1. If the boundary of a square in the *xz*-plane is traversed from (0,0,0) to (1,0,0) to (1,0,1) to (0,0,1) to (0,0,0), what is the compatible direction for the vector normal to the square?

Solution. The direction of the boundary is counterclockwise as seen from the negative part of the *y*-axis, so the compatible direction for the vector normal to the square is the $-\hat{j}$ direction.

2. Find the flux of the vector field $\vec{F}(x, y, z) = z\hat{k}$ across the part of the paraboloid $z = 1 - x^2 - y^2$ above the *xy*-plane, that is, $\iint \vec{F} \cdot \hat{n} \, dS$ (where the surface is oriented upward).

Solution. The paraboloid is the level surface on which $z + x^2 + y^2 = 1$. The gradient vector $\langle 2x, 2y, 1 \rangle$ is normal to the surface, and since the \hat{k} component of the gradient vector is positive, this normal is oriented upward, as indicated in the statement of the problem. On the surface, $\vec{F} = (1 - x^2 - y^2)\hat{k}$. The dot product of this vector field with the normal vector equals $1 - x^2 - y^2$, so $\iint \vec{F} \cdot \hat{n} \, dS = \iint_R (1 - x^2 - y^2) \, dA$, where the integration region *R* is the disk in the *xy*-plane bounded by the circle $x^2 + y^2 = 1$.

The integral is most easily computed in polar coordinates:

$$\iint_{R} (1 - x^{2} - y^{2}) dA = \int_{0}^{2\pi} \int_{0}^{1} (1 - r^{2}) r dr d\theta$$
$$= 2\pi \left[\frac{1}{2} r^{2} - \frac{1}{4} r^{4} \right]_{0}^{1}$$
$$= \frac{\pi}{2}.$$

3. If $\vec{G}(x, y, z) = 3x^2\hat{\imath} + 4y^3\hat{\jmath} + 5z^4\hat{k}$, find the value of the line integral $\int_C \vec{G} \cdot d\vec{r}$ when *C* is the boundary of the surface in problem 2 (oriented counterclockwise as seen from above).

Solution. Here are three different ways to show that the answer is 0.

By Stokes's theorem, the integral equals $\iint \nabla \times \vec{G} \cdot \hat{n} \, dS$, where the area integral is taken over the surface in problem 2. A routine calculation shows that $\nabla \times \vec{G} = 0$, so the integral equals 0.

Spring 2013

Quiz 10 Several Variable Calculus

Spring 2013

Since the curve lies in the *xy*-plane, where the vector field \vec{G} reduces to $3x^2\hat{\imath} + 4y^3\hat{\jmath}$, you could just as well apply Green's theorem:

$$\int_{C} \vec{G} \cdot d\vec{r} = \int_{C} 3x^{2} dx + 4y^{3} dy$$
$$= \iint_{R} \left(\frac{\partial}{\partial x} (4y^{3}) - \frac{\partial}{\partial y} (3x^{2}) \right) dA$$
$$= \iint_{R} 0 dA$$
$$= 0,$$

where *R* is the region in the *xy*-plane inside the circle $x^2 + y^2 = 1$. Alternatively, observe that $\vec{G} = \nabla(x^3 + y^4 + z^5)$, so $\int_C \vec{G} \cdot d\vec{r}$ equals the difference of the values of \vec{G} at the ending and starting points of the curve. But these two points are the same for a closed curve, so the integral equals 0. (In other words, the vector field \vec{G} is a conservative vector field.)

Math 221