Several Variable Calculus

1. If the boundary of a square in the $x z$-plane is traversed from $(0,0,0)$ to $(1,0,0)$ to $(1,0,1)$ to $(0,0,1)$ to $(0,0,0)$, what is the compatible direction for the vector normal to the square?

Solution. The direction of the boundary is counterclockwise as seen from the negative part of the y-axis, so the compatible direction for the vector normal to the square is the $-\hat{\jmath}$ direction.
2. Find the flux of the vector field $\vec{F}(x, y, z)=z \hat{k}$ across the part of the paraboloid $z=1-x^{2}-y^{2}$ above the $x y$-plane, that is, $\iint \vec{F} \cdot \hat{n} \mathrm{~d} S$ (where the surface is oriented upward).

Solution. The paraboloid is the level surface on which $z+x^{2}+y^{2}=1$. The gradient vector $\langle 2 x, 2 y, 1\rangle$ is normal to the surface, and since the \hat{k} component of the gradient vector is positive, this normal is oriented upward, as indicated in the statement of the problem. On the surface, $\vec{F}=\left(1-x^{2}-y^{2}\right) \hat{k}$. The dot product of this vector field with the normal vector equals $1-x^{2}-y^{2}$, so $\iint \vec{F} \cdot \hat{n} \mathrm{~d} S=\iint_{R}\left(1-x^{2}-y^{2}\right) \mathrm{d} A$, where the integration region R is the disk in the $x y$-plane bounded by the circle $x^{2}+y^{2}=1$.
The integral is most easily computed in polar coordinates:

$$
\begin{aligned}
\iint_{R}\left(1-x^{2}-y^{2}\right) \mathrm{d} A & =\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r \mathrm{~d} r \mathrm{~d} \theta \\
& =2 \pi\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1} \\
& =\frac{\pi}{2}
\end{aligned}
$$

3. If $\overrightarrow{\boldsymbol{G}}(x, y, z)=3 x^{2} \hat{\imath}+4 y^{3} \hat{\jmath}+5 z^{4} \hat{k}$, find the value of the line integral $\int_{C} \overrightarrow{\boldsymbol{G}} \cdot d \vec{r}$ when C is the boundary of the surface in problem 2 (oriented counterclockwise as seen from above).

Solution. Here are three different ways to show that the answer is 0 .
By Stokes's theorem, the integral equals $\iint \nabla \times \vec{G} \cdot \hat{n} \mathrm{~d} S$, where the area integral is taken over the surface in problem 2. A routine calculation shows that $\nabla \times \vec{G}=0$, so the integral equals 0 .

Several Variable Calculus

Since the curve lies in the $x y$-plane, where the vector field \vec{G} reduces to $3 x^{2} \hat{\imath}+4 y^{3} \hat{\jmath}$, you could just as well apply Green's theorem:

$$
\begin{aligned}
\int_{C} \vec{G} \cdot d \vec{r} & =\int_{C} 3 x^{2} \mathrm{~d} x+4 y^{3} \mathrm{~d} y \\
& =\iint_{R}\left(\frac{\partial}{\partial x}\left(4 y^{3}\right)-\frac{\partial}{\partial y}\left(3 x^{2}\right)\right) \mathrm{d} A \\
& =\iint_{R} 0 \mathrm{~d} A \\
& =0
\end{aligned}
$$

where R is the region in the $x y$-plane inside the circle $x^{2}+y^{2}=1$.
Alternatively, observe that $\vec{G}=\nabla\left(x^{3}+y^{4}+z^{5}\right)$, so $\int_{C} \vec{G} \cdot \mathrm{~d} \vec{r}$ equals the difference of the values of \vec{G} at the ending and starting points of the curve. But these two points are the same for a closed curve, so the integral equals 0 . (In other words, the vector field \vec{G} is a conservative vector field.)

