Several Variable Calculus

1. Suppose $f(x, y)=x y$. Which of the following pictures is a contour map of this function? Explain how you know.

Solution. Setting $x y$ equal to a constant produces a hyperbola with the two coordinate axes as asymptotes (see page A21 in Appendix C to the textbook), so the answer is plot (B). (The special case when $x y=0$ produces the coordinate axes themselves.)
Alternatively, you can get the answer without using any knowledge of conic sections. Consider a typical level curve, say $x y=1$. When x gets close to 0 , the value of y has to get large in magnitude (since $y=1 / x$). In picture (A), the value of y gets close to 0 when x does, and in picture (C), the value of y approaches a finite value when x gets close to 0 . Therefore the answer has to be (B).
2. Does $\lim _{(x, y) \rightarrow(0,0)} \frac{(x+y)^{2}}{x^{2}+y^{2}}$ exist? Explain why or why not.

Solution. (This problem is Exercise 12 on page 739 of the textbook.) This two-dimensional limit does not exist, for there are different limits along different paths approaching the point $(0,0)$.
Indeed, on the x-axis (where $y=0$), the function equals x^{2} / x^{2}, or 1 , so the limit as $x \rightarrow 0$ equals 1 . But along the line where $y=-x$, the function equals 0 , so the limit at $(0,0)$ along this line equals 0 . And along the line where $y=x$, the function equals $(2 x)^{2} /\left(2 x^{2}\right)$, or 2 , so the limit at $(0,0)$ along this line equals 2 . Since there are different limits at $(0,0)$ along different paths, the two-dimensional limit does not exist.

Several Variable Calculus

Another way to analyze the problem is to expand the numerator to simplify the function:

$$
\frac{(x+y)^{2}}{x^{2}+y^{2}}=\frac{x^{2}+2 x y+y^{2}}{x^{2}+y^{2}}=1+2 \frac{x y}{x^{2}+y^{2}}
$$

And now the problem reduces to Example 2 on page 734 of the textbook.
3. Suppose $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Compute $\frac{\partial f}{\partial z}(0,3,4)$.

Solution. (This problem is Exercise 14 on page 746 of the textbook.) To compute the z partial derivative, treat the variables x and y as constants. Then

$$
\frac{\partial f}{\partial z}(0,3,4)=\left.\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}(0+0+2 z)\right|_{(x, y, z)=(0,3,4)}=\frac{4}{5} .
$$

Alternatively, since x and y are treated as constants, you could plug in their values at the beginning of the calculation: $f(0,3, z)=\sqrt{9+z^{2}}$, so

$$
\frac{\partial f}{\partial z}(0,3,4)=\left.\frac{d}{d z} \sqrt{9+z^{2}}\right|_{z=4}=\left.\frac{1}{2}\left(9+z^{2}\right)^{-1 / 2}(2 z)\right|_{z=4}=\frac{4}{5}
$$

