Several Variable Calculus

1. Suppose $z=x e^{y}$. Find an equation of the plane tangent to this surface at the point $(1,0,1)$.

Solution. This problem is Exercise 36 on page 790. One equation for the tangent plane is the following:

$$
z-1=\frac{\partial z}{\partial x}(1,0,1)(x-1)+\frac{\partial z}{\partial y}(1,0,1)(y-0) .
$$

Now $\frac{\partial z}{\partial x}=e^{y}$, so $\frac{\partial z}{\partial x}(1,0,1)=1$, while $\frac{\partial z}{\partial y}=x e^{y}$, so $\frac{\partial z}{\partial y}(1,0,1)=1$. Substituting this information into the preceding equation yields the following result:

$$
z-1=(x-1)+y, \quad \text { or } \quad z=x+y .
$$

An alternative method is to rewrite the equation of the surface as follows: $z-x e^{y}=0$. This equation displays the surface as a level surface, and the gradient vector $\left\langle-e^{y},-x e^{y}, 1\right\rangle$ is normal to the surface. At the specified point, the gradient vector becomes $\langle-1,-1,1\rangle$, so an equation for the tangent plane is the following:

$$
-x-y+z=d, \quad \text { where } \quad d=-1-0+1=0
$$

This answer again says that $z=x+y$.
2. If $z=f(x, y)$ and $x=g(s, t)$ and $y=h(s, t)$, then z can be viewed as a function of s and t. Suppose at a certain point

$$
\frac{\partial f}{\partial x}=2, \frac{\partial f}{\partial y}=3, \frac{\partial g}{\partial s}=5, \frac{\partial g}{\partial t}=7, \frac{\partial h}{\partial s}=-1, \frac{\partial h}{\partial t}=-4 .
$$

Use this information to determine the value of $\frac{\partial z}{\partial t}$.
Solution. One method is to say that

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial h}{\partial t}=2 \times 7+3 \times(-4)=2 .
$$

Alternatively, you could argue with differentials as follows:

$$
\mathrm{d} z=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y=2 \mathrm{~d} x+3 \mathrm{~d} y .
$$

Several Variable Calculus

Similarly

$$
\begin{aligned}
\mathrm{d} x & =\frac{\partial g}{\partial s} \mathrm{~d} s+\frac{\partial g}{\partial t} \mathrm{~d} t=5 \mathrm{~d} s+7 \mathrm{~d} t \\
\mathrm{~d} y & =\frac{\partial h}{\partial s} \mathrm{~d} s+\frac{\partial h}{\partial t} \mathrm{~d} t=-\mathrm{d} s-4 \mathrm{~d} t
\end{aligned}
$$

Substituting the expressions for $\mathrm{d} x$ and $\mathrm{d} y$ into the expression for $\mathrm{d} z$ shows that

$$
\mathrm{d} z=(10 \mathrm{~d} s+14 \mathrm{~d} t)+(-3 \mathrm{~d} s-12 \mathrm{~d} t)=7 \mathrm{~d} s+2 \mathrm{~d} t
$$

Since $\mathrm{d} z=\frac{\partial z}{\partial s} \mathrm{~d} s+\frac{\partial z}{\partial t} \mathrm{~d} t$, it follows that $\frac{\partial z}{\partial s}=7$ and $\frac{\partial z}{\partial t}=2$.
3. Suppose $f(x, y, z)=z e^{x y}$. Find the direction in which $f(x, y, z)$ increases most rapidly at the point $(0,1,2)$.

Solution. This problem is Exercise 56 on page 791. The gradient vector points in the direction in which the function increases most rapidly. Now

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\left\langle y z e^{x y}, x z e^{x y}, e^{x y}\right\rangle
$$

so $\nabla f(0,1,2)=\langle 2,0,1\rangle$. The vector $\langle 2,0,1\rangle$ is an acceptable answer, and so is the unit vector $\left\langle\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right\rangle$.

