1. Suppose $z = x e^{y}$. Find an equation of the plane tangent to this surface at the point (1, 0, 1).

Solution. This problem is Exercise 36 on page 790. One equation for the tangent plane is the following:

$$z - 1 = \frac{\partial z}{\partial x}(1, 0, 1)(x - 1) + \frac{\partial z}{\partial y}(1, 0, 1)(y - 0).$$

Now $\frac{\partial z}{\partial x} = e^y$, so $\frac{\partial z}{\partial x}(1,0,1) = 1$, while $\frac{\partial z}{\partial y} = x e^y$, so $\frac{\partial z}{\partial y}(1,0,1) = 1$. Substituting this information into the preceding equation yields the following result:

$$z - 1 = (x - 1) + y$$
, or $z = x + y$.

An alternative method is to rewrite the equation of the surface as follows: $z - x e^y = 0$. This equation displays the surface as a level surface, and the gradient vector $\langle -e^y, -x e^y, 1 \rangle$ is normal to the surface. At the specified point, the gradient vector becomes $\langle -1, -1, 1 \rangle$, so an equation for the tangent plane is the following:

$$-x - y + z = d$$
, where $d = -1 - 0 + 1 = 0$.

This answer again says that z = x + y.

2. If z = f(x, y) and x = g(s, t) and y = h(s, t), then z can be viewed as a function of s and t. Suppose at a certain point

$$\frac{\partial f}{\partial x} = 2, \ \frac{\partial f}{\partial y} = 3, \ \frac{\partial g}{\partial s} = 5, \ \frac{\partial g}{\partial t} = 7, \ \frac{\partial h}{\partial s} = -1, \ \frac{\partial h}{\partial t} = -4.$$

Use this information to determine the value of $\frac{\partial z}{\partial t}$.

Solution. One method is to say that

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial g}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial h}{\partial t} = 2 \times 7 + 3 \times (-4) = 2.$$

Alternatively, you could argue with differentials as follows:

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 2 dx + 3 dy.$$

February 7, 2013

Math 221

$$dx = \frac{\partial g}{\partial s} ds + \frac{\partial g}{\partial t} dt = 5 ds + 7 dt,$$

$$dy = \frac{\partial h}{\partial s} ds + \frac{\partial h}{\partial t} dt = -ds - 4 dt.$$

Ouiz 4

Several Variable Calculus

Substituting the expressions for dx and dy into the expression for dz shows that

$$dz = (10 ds + 14 dt) + (-3 ds - 12 dt) = 7 ds + 2 dt.$$

Since $dz = \frac{\partial z}{\partial s} ds + \frac{\partial z}{\partial t} dt$, it follows that $\frac{\partial z}{\partial s} = 7$ and $\frac{\partial z}{\partial t} = 2$.

3. Suppose $f(x, y, z) = z e^{xy}$. Find the direction in which f(x, y, z) increases most rapidly at the point (0, 1, 2).

Solution. This problem is Exercise 56 on page 791. The gradient vector points in the direction in which the function increases most rapidly. Now

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \left\langle yz \, e^{xy}, xz \, e^{xy}, e^{xy} \right\rangle,$$

so $\nabla f(0, 1, 2) = \langle 2, 0, 1 \rangle$. The vector $\langle 2, 0, 1 \rangle$ is an acceptable answer, and so is the unit vector $\left\langle \frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}} \right\rangle$.

Math 221

Spring 2013