Several Variable Calculus

1. Calculate the iterated integral $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x+y) \mathrm{d} y \mathrm{~d} x$.

Solution. This problem is Exercise 10 on page 804 of the textbook. Here is the calculation:

$$
\begin{aligned}
\int_{0}^{\pi / 2}\left(\int_{0}^{\pi / 2} \sin (x+y) \mathrm{d} y\right) \mathrm{d} x & =\int_{0}^{\pi / 2}[-\cos (x+y)]_{y=0}^{y=\pi / 2} \mathrm{~d} x \\
& =\int_{0}^{\pi / 2}\left(-\cos \left(x+\frac{\pi}{2}\right)+\cos (x)\right) \mathrm{d} x \\
& =\left[-\sin \left(x+\frac{\pi}{2}\right)+\sin (x)\right]_{0}^{\pi / 2} \\
& =\left(-\sin (\pi)+\sin \left(\frac{\pi}{2}\right)\right)-\left(-\sin \left(\frac{\pi}{2}\right)+\sin (0)\right) \\
& =2
\end{aligned}
$$

2. Calculate the double integral

$$
\iint_{R} y e^{x y} \mathrm{~d} A, \quad \text { where } R=[0,1] \times[0,1] .
$$

Solution. This problem is the same as an example that we worked in class (Exercise 20 on page 804) except with the variables x and y interchanged. The effective way to solve this problem is to integrate first with respect to x :

$$
\begin{aligned}
\iint_{R} y e^{x y} \mathrm{~d} A & =\int_{0}^{1} \int_{0}^{1} y e^{x y} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{1}\left[e^{x y}\right]_{x=0}^{x=1} \mathrm{~d} y \\
& =\int_{0}^{1}\left(e^{y}-1\right) \mathrm{d} y \\
& =\left[e^{y}-y\right]_{0}^{1} \\
& =(e-1)-(1-0) \\
& =e-2
\end{aligned}
$$

Several Variable Calculus

If instead you try to integrate first with respect to y, then you have to integrate by parts, and you end up with a difficult integral in the x variable.
3. Evaluate the double integral $\iint_{D} y \mathrm{~d} A$, where D is the triangular region with vertices $(0,0),(1,0)$, and $(0,1)$.

Solution. Here is a picture of the region D :

The work required to compute the iterated integral is about the same in either order. Here is the computation with the x integration first:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-y} y \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{1}[x y]_{x=0}^{x=1-y} \mathrm{~d} y \\
& =\int_{0}^{1}(1-y) y \mathrm{~d} y \\
& =\int_{0}^{1}\left(y-y^{2}\right) \mathrm{d} y \\
& =\left[\frac{1}{2} y^{2}-\frac{1}{3} y^{3}\right]_{0}^{1} \\
& =\frac{1}{6}
\end{aligned}
$$

And here is the computation with the y integration first:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x} y \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{1}\left[\frac{1}{2} y^{2}\right]_{y=0}^{y=1-x} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{1}(1-x)^{2} \mathrm{~d} x \\
& =\frac{1}{2}\left(-\frac{1}{3}\right)\left[(1-x)^{3}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

