Quiz 6 Several Variable Calculus

Spring 2013

1. Evaluate the iterated integral $\int_0^1 \int_{y^2}^1 4y e^{x^2} dx dy$. Hint: Reverse the order of integration.

Math 221

Solution. The indicated bounds on x are the parabola $x = y^2$ (opening sideways) and the vertical line x = 1. Here is a picture of the integration region:

Reversing the limits leads to the following integral:

$$\int_{0}^{1} \int_{0}^{\sqrt{x}} 4y \, e^{x^{2}} \, \mathrm{d}y \, \mathrm{d}x = \int_{0}^{1} \left[2y^{2} \right]_{0}^{\sqrt{x}} e^{x^{2}} \, \mathrm{d}x$$
$$= \int_{0}^{1} 2x \, e^{x^{2}} \, \mathrm{d}x$$
$$= \left[e^{x^{2}} \right]_{0}^{1}$$
$$= e - 1.$$

2. Evaluate the double integral $\iint_D x^2 dA$, where *D* is the region in the first quadrant where $x^2 + y^2 \le 1$.

Quiz 6 Several Variable Calculus

Spring 2013

Solution. Converting to polar coordinates is the simplest approach:

$$\iint_{D} x^{2} dA = \int_{0}^{\pi/2} \int_{0}^{1} (r \cos \theta)^{2} r dr d\theta$$

$$= \int_{0}^{\pi/2} \int_{0}^{1} r^{3} \cos^{2} \theta dr d\theta$$

$$= \int_{0}^{\pi/2} \left[\frac{1}{4} r^{4} \right]_{0}^{1} \cos^{2} \theta d\theta$$

$$= \frac{1}{4} \int_{0}^{\pi/2} \cos^{2} \theta d\theta$$

$$= \frac{1}{8} \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta$$

$$= \frac{1}{8} \left[\theta + \frac{1}{2} \sin 2\theta \right]_{0}^{\pi/2}$$

$$= \frac{1}{8} \left[\left(\frac{\pi}{2} + \frac{1}{2} \sin \pi \right) - \left(0 + \frac{1}{2} \sin \theta \right) \right]_{0}^{\pi/2} d\theta$$

$$= \frac{\pi}{16}.$$

3. The polar equation $r = 2 + \sin \theta$ corresponds to which one of the following graphs? Explain how you know.

Solution. Observe that $1 \le 2 + \sin \theta \le 3$ (since $-1 \le \sin \theta \le 1$), so *r* is never equal to 0. Graph (B) is the only one that does not pass through the origin.

Math 221