Several Variable Calculus

1. Evaluate the iterated integral $\int_{0}^{1} \int_{y^{2}}^{1} 4 y e^{x^{2}} \mathrm{~d} x \mathrm{~d} y$.

Hint: Reverse the order of integration.

Solution. The indicated bounds on x are the parabola $x=y^{2}$ (opening sideways) and the vertical line $x=1$. Here is a picture of the integration region:

Reversing the limits leads to the following integral:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\sqrt{x}} 4 y e^{x^{2}} \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{1}\left[2 y^{2}\right]_{0}^{\sqrt{x}} e^{x^{2}} \mathrm{~d} x \\
& =\int_{0}^{1} 2 x e^{x^{2}} \mathrm{~d} x \\
& =\left[e^{x^{2}}\right]_{0}^{1} \\
& =e-1
\end{aligned}
$$

2. Evaluate the double integral $\iint_{D} x^{2} \mathrm{~d} A$, where D is the region in the first quadrant where $x^{2}+y^{2} \leq 1$.

Several Variable Calculus

Solution. Converting to polar coordinates is the simplest approach:

$$
\begin{aligned}
\iint_{D} x^{2} \mathrm{~d} A & =\int_{0}^{\pi / 2} \int_{0}^{1}(r \cos \theta)^{2} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \cos ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 2}\left[\frac{1}{4} r^{4}\right]_{0}^{1} \cos ^{2} \theta \mathrm{~d} \theta \\
& =\frac{1}{4} \int_{0}^{\pi / 2} \cos ^{2} \theta \mathrm{~d} \theta \\
& =\frac{1}{8} \int_{0}^{\pi / 2}(1+\cos 2 \theta) \mathrm{d} \theta \\
& =\frac{1}{8}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2} \\
& =\frac{1}{8}\left[\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-\left(0+\frac{1}{2} \sin 0\right)\right] \\
& =\frac{\pi}{16}
\end{aligned}
$$

3. The polar equation $r=2+\sin \theta$ corresponds to which one of the following graphs? Explain how you know.

Solution. Observe that $1 \leq 2+\sin \theta \leq 3$ (since $-1 \leq \sin \theta \leq 1$), so r is never equal to 0 . Graph (B) is the only one that does not pass through the origin.

