Several Variable Calculus

1. Find the y coordinate of the center of mass of a lamina in the first quadrant of the $x y$-plane bounded by the lines $x=0$ and $y=1$ and the parabola $y=x^{2}$. Suppose $\rho(x, y)=1$ (the density function).

Solution. First compute the mass as an iterated double integral:

$$
m=\int_{0}^{1} \int_{x^{2}}^{1} 1 \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1}\left(1-x^{2}\right) \mathrm{d} x=\left[x-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{2}{3} .
$$

Next compute the y coordinate of the center of mass:

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \int_{0}^{1} \int_{x^{2}}^{1} y \mathrm{~d} y \mathrm{~d} x=\frac{3}{2} \int_{0}^{1}\left[\frac{1}{2} y^{2}\right]_{x^{2}}^{1} \mathrm{~d} x=\frac{3}{4} \int_{0}^{1}\left(1-x^{4}\right) \mathrm{d} x \\
& =\frac{3}{4}\left[x-\frac{1}{5} x^{5}\right]_{0}^{1}=\frac{3}{5} .
\end{aligned}
$$

2. Find the surface area of the part of the plane $x+z=2$ that lies above the square in the $x y$-plane with vertices $(0,0),(1,0),(1,1)$, and $(0,1)$.

Solution. The equation of the surface can be written in the form $z=2-x$. Then $\frac{\partial z}{\partial x}=-1$ and $\frac{\partial z}{\partial y}=0$, so $\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+1+0}=$ $\sqrt{2}$. Accordingly, the surface area equals

$$
\int_{0}^{1} \int_{0}^{1} \sqrt{2} \mathrm{~d} x \mathrm{~d} y, \quad \text { or } \quad \sqrt{2}
$$

Remark Since the surface is a piece of a plane (not a curved surface), the area can actually be computed without using calculus. The surface is a rectangle sitting over a square and making an angle $\pi / 4$ with the $x y$-plane. The area of this rectangle is the area of the square times the secant of the angle, hence 1 times $\sqrt{2}$.

Several Variable Calculus

3. Evaluate the triple integral $\iiint_{E} y z \mathrm{~d} V$, where E is the region defined by the inequalities $0 \leq z \leq 1$ and $0 \leq y \leq 2 z$ and $0 \leq x \leq z+2$.

Solution. This problem is Exercise 7 on page 843 in section 13.8, one of the suggested exercises. There are different ways to set up the iterated integral. Here is one:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 z} \int_{0}^{z+2} y z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\int_{0}^{1} \int_{0}^{2 z} y z[x]_{0}^{z+2} \mathrm{~d} y \mathrm{~d} z \\
& =\int_{0}^{1} \int_{0}^{2 z} y z(z+2) \mathrm{d} y \mathrm{~d} z \\
& =\int_{0}^{1} z(z+2)\left[\frac{1}{2} y^{2}\right]_{0}^{2 z} \mathrm{~d} z \\
& =\int_{0}^{1} z(z+2) \frac{4}{2} z^{2} \mathrm{~d} z \\
& =2 \int_{0}^{1}\left(z^{4}+2 z^{3}\right) \mathrm{d} z \\
& =2\left[\frac{1}{5} z^{5}+\frac{2}{4} z^{4}\right]_{0}^{1} \\
& =\frac{7}{5}
\end{aligned}
$$

