Several Variable Calculus

1. Green's theorem says that

$$
\int_{C} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A
$$

What do the symbols C and D represent in this formula?
Solution. The statement of Green's theorem on page 892 in the textbook says that C is a piecewise-smooth, positively oriented, simple closed curve in the plane, and D is the region bounded by C.
The most essential hypothesis is that C is a closed curve, meaning that the curve starts and stops at the same point.
The word "simple" means that the curve does not cross itself. (If a curve crosses itself, then there is an ambiguity about which points are inside the curve and which points are outside.) A simple closed curve has an inside and an outside, and D denotes the region inside the curve C.
The "positive" orientation for C is counterclockwise. (Reversing the direction of the curve changes the sign of the integral.)
The hypothesis of piecewise smoothness (which is defined way back on page 699 in section 11.7) is a technical assumption to guarantee that the line integral makes sense. Since the definition of a line integral involves the tangent vector to the curve, the curve needs to have a well-defined tangent vector, except perhaps at a finite number of points. And the tangent vector should change in a continuous way, since continuous functions are the ones that you know can be integrated.
2. Apply Green's theorem to evaluate the line integral $\int_{C} \sin \left(x^{2}\right) \mathrm{d} x+x \mathrm{~d} y$, where the closed curve C is the square with vertices $(\pm 1, \pm 1)$.

Solution. If the orientation of C is counterclockwise, then Green's theorem implies that

$$
\int_{C} \sin \left(x^{2}\right) \mathrm{d} x+x \mathrm{~d} y=\iint_{D}\left(\frac{\partial x}{\partial x}-\frac{\partial \sin \left(x^{2}\right)}{\partial y}\right) \mathrm{d} A=\iint_{D} 1 \mathrm{~d} A .
$$

In other words, the integral equals the area of a square whose sides have length 2 . This area is 4 .

Several Variable Calculus

3. Find the work done by the force $\vec{F}(x, y)=-y \hat{\imath}+x \hat{\jmath}$ in moving a particle once around the circle with equation $x^{2}+y^{2}=1$.

Solution. The work is $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$, or $\int_{C}-y \mathrm{~d} x+x \mathrm{~d} y$. Green's theorem implies that if the circle is traversed in the counterclockwise direction, then

$$
\int_{C}-y \mathrm{~d} x+x \mathrm{~d} y=\iint_{D}\left(\frac{\partial x}{\partial x}-\frac{\partial(-y)}{\partial y}\right) \mathrm{d} A=\iint_{D} 2 \mathrm{~d} A .
$$

In other words, the work equals twice the area of a circle of radius 1 . Thus the work equals 2π.
An alternative method (without using Green's theorem) is to parametrize the circle by $x=\cos (\theta)$ and $y=\sin (\theta)$. Then

$$
\begin{aligned}
\int_{C}-y \mathrm{~d} x+x \mathrm{~d} y & =\int_{0}^{2 \pi}(-\sin (\theta)(-\sin (\theta))+\cos (\theta) \cos (\theta)) \mathrm{d} \theta \\
& =\int_{0}^{2 \pi}\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right) \mathrm{d} \theta \\
& =\int_{0}^{2 \pi} 1 \mathrm{~d} \theta \\
& =2 \pi
\end{aligned}
$$

