Several Variable Calculus

1. The final examination is on what date and at what time?

Solution. The final examination takes place on the third of May from 15:00 to $17: 00$, or, more memorably, $3-5$ on $5 / 3$.
2. Find curl \vec{F} and $\operatorname{div} \vec{F}$ [that is, $\nabla \times \vec{F}$ and $\nabla \cdot \vec{F}$] when

$$
\vec{F}(x, y, z)=(\sin x) \hat{\imath}+(\cos x) \hat{\jmath}+z^{2} \hat{k} .
$$

Solution. This problem is a routine computation:

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin x & \cos x & z^{2}
\end{array}\right| \\
& =\hat{\imath}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos x & z^{2}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
\sin x & z^{2}
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\sin x & \cos x
\end{array}\right| \\
& =-(\sin x) \hat{k},
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla \cdot \vec{F} & =\frac{\partial}{\partial x}(\sin x)+\frac{\partial}{\partial y}(\cos x)+\frac{\partial}{\partial z}\left(z^{2}\right) \\
& =\cos x+2 z
\end{aligned}
$$

3. Set up an integral for the surface area of the parametric surface given by

$$
\vec{r}(u, v)=v^{2} \hat{\imath}-u v \hat{\jmath}+u^{2} \hat{k}, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 2 .
$$

(Do not attempt to evaluate the integral!)
Solution. The element of surface area in parametric form is $\mathrm{d} u \mathrm{~d} v$ times the area of the parallelogram determined by the tangent vectors $\frac{\partial \vec{r}}{\partial u}$ and $\frac{\partial \vec{r}}{\partial v}$: namely, the length of the cross product $\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}$. Here is the computation.

$$
\frac{\partial \vec{r}}{\partial u}=0 \hat{\imath}-v \hat{\jmath}+2 u \hat{k} \quad \text { and } \quad \frac{\partial \vec{r}}{\partial v}=2 v \hat{\imath}-u \hat{\jmath}+0 \hat{k},
$$

Several Variable Calculus

so

$$
\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & -v & 2 u \\
2 v & -u & 0
\end{array}\right|=2 u^{2} \hat{\imath}+4 u v \hat{\jmath}+2 v^{2} \hat{k} .
$$

The length of this vector is $\sqrt{4 u^{4}+16 u^{2} v^{2}+4 v^{4}}$. Therefore the surface area is given by the integral

$$
\int_{0}^{2} \int_{0}^{1} \sqrt{4 u^{4}+16 u^{2} v^{2}+4 v^{4}} \mathrm{~d} u \mathrm{~d} v
$$

or

$$
2 \int_{0}^{2} \int_{0}^{1} \sqrt{u^{4}+4 u^{2} v^{2}+v^{4}} \mathrm{~d} u \mathrm{~d} v
$$

(This integral cannot be evaluated in terms of elementary functions.)

