Math 304

Linear Algebra

Harold P. Boas

boas@tamu.edu

May 30, 2006

Solving a system of linear equations

An example

$$x_1 - x_2 + x_3 = 9$$

 $-2x_1 + 3x_2 + 10x_3 = 3$
 $3x_1 - 5x_2 - 16x_3 = -5$

Add 2 times the first equation to the second equation to get the equivalent system

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $3x_1 - 5x_2 - 16x_3 = -5$

Solving a system of linear equations

An example

Solve the system of simultaneous equations

$$x_1 - x_2 + x_3 = 9$$

 $-2x_1 + 3x_2 + 10x_3 = 3$
 $3x_1 - 5x_2 - 16x_3 = -5$

Geometric interpretation: find the intersection points of three planes in three-dimensional space R^3 .

In principle, there might be no solution (parallel planes) or exactly one solution (the planes intersect in one point) or infinitely many solutions (the planes intersect in a line).

Solution strategy: replace the system by a simpler equivalent system with the same solution(s).

Solving a system of linear equations

An example

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $3x_1 - 5x_2 - 16x_3 = -5$

Add -3 times the first equation to the third equation to get the equivalent system

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $-2x_2 - 19x_3 = -32$

Solving a system of linear equations

An example

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $-2x_2 - 19x_3 = -32$

Add 2 times the second equation to the third equation to get the equivalent system

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $5x_3 = 10$

Solving a system of linear equations

An example

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $5x_3 = 10$

Divide the third equation by 5 to get the equivalent system

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $x_3 = 2$

Solving a system of linear equations

An example

$$x_1 - x_2 + x_3 = 9$$

 $x_2 + 12x_3 = 21$
 $x_3 = 2$

Take the value $x_3 = 2$ from the third equation and *back substitute* in the second equation to get $x_2 = -3$. Then back substitute in the first equation to get $x_1 = 4$. Thus our system of equations has a unique solution $(x_1, x_2, x_3) = (4, -3, 2)$.

Solving a system of linear equations

An example

Final check: verify that the values $(x_1, x_2, x_3) = (4, -3, 2)$ do work in all three of the original equations

$$x_1 - x_2 + x_3 = 9$$

 $-2x_1 + 3x_2 + 10x_3 = 3$
 $3x_1 - 5x_2 - 16x_3 = -5$

It checks; we are done.

Solving a system of linear equations

Reinterpretation

In the preceding calculation, the variables x_1 , x_2 , x_3 acted essentially as placeholders. Instead of working with the system

$$x_1 - x_2 + x_3 = 9$$

 $-2x_1 + 3x_2 + 10x_3 = 3$
 $3x_1 - 5x_2 - 16x_3 = -5$

we could work with the coefficient matrix

$$\begin{pmatrix}
1 & -1 & 1 & 9 \\
-2 & 3 & 10 & 3 \\
3 & -5 & -16 & -5
\end{pmatrix}$$

Solving a system of linear equations

Reinterpretation

The allowed *elementary row operations* on matrices are:

- ▶ add a multiple of a row to another row
- multiply (or divide) a row by a nonzero number
- interchange two rows

The process of using these operations to reduce a matrix to echelon (stair-step) form is called *Gaussian elimination*.

An example of Gaussian elimination

Exercise 5(I) on page 26

Solve

$$x_1 - 3x_2 + x_3 = 1$$

 $2x_1 + x_2 - x_3 = 2$
 $x_1 + 4x_2 - 2x_3 = 1$
 $5x_1 - 8x_2 + 2x_3 = 5$

The corresponding matrix is

$$\begin{pmatrix}
1 & -3 & 1 & | & 1 \\
2 & 1 & -1 & | & 2 \\
1 & 4 & -2 & | & 1 \\
5 & -8 & 2 & | & 5
\end{pmatrix}$$

An example of Gaussian elimination

Exercise 5(I) on page 26

$$\begin{pmatrix}
1 & -3 & 1 & 1 \\
2 & 1 & -1 & 2 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{pmatrix}
\xrightarrow{R_2 - 2R_1}
\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{pmatrix}$$

$$\xrightarrow{R_3 - R_1}
\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0 \\
5 & -8 & 2 & 5
\end{pmatrix}
\xrightarrow{R_4 - 5R_1}
\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0
\end{pmatrix}
\xrightarrow{R_3 - R_2}
\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0
\end{pmatrix}
\xrightarrow{R_2 / 7}
\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

An example of Gaussian elimination

Exercise 5(I) on page 26

$$\begin{pmatrix}
1 & -3 & 1 & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Interpretation:

The variable x_3 is a *free variable* whose value can be prescribed arbitrarily; then the values of x_1 and x_2 are determined. The original system of equations has infinitely many solutions.

To write the solutions, it is convenient to do an extra step to bring the system to *reduced* row echelon form (Gauss-Jordan reduction).

An example of Gaussian elimination

Exercise 5(I) on page 26

Remark: In the computer program MATLAB, the following code produces the reduced row echelon form of the preceding example:

```
format rat;
A=[1 -3 1 1; 2 1 -1 2; 1 4 -2 1; 5 -8 2 5];
rref(A)
```

MATLAB's output is:

1	0	-2/7	1
0	1	-3/7	0
0	0	0	0
0	0	0	0

An example of Gaussian elimination

Exercise 5(I) on page 26

$$\begin{pmatrix}
1 & -3 & 1 & | & 1 \\
0 & 1 & -\frac{3}{7} & | & 0 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_1 + 3R_2}
\begin{pmatrix}
1 & 0 & -\frac{2}{7} & | & 1 \\
0 & 1 & -\frac{3}{7} & | & 0 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Now you can read off the solution

$$x_1 = 1 + \frac{2}{7}x_3$$

$$x_2 = \frac{3}{7}x_3$$

$$x_3 \quad \text{arbitrary}$$

The solution set represents a line in R^3 .