Math 304

Linear Algebra

Harold P. Boas

boas@tamu.edu
May 30, 2006

Solving a system of linear equations

An example

Solve the system of simultaneous equations

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}= & 9 \\
-2 x_{1}+3 x_{2}+10 x_{3}= & 3 \\
3 x_{1}-5 x_{2}-16 x_{3}= & -5
\end{aligned}
$$

Geometric interpretation: find the intersection points of three planes in three-dimensional space R^{3}.
In principle, there might be no solution (parallel planes) or exactly one solution (the planes intersect in one point) or infinitely many solutions (the planes intersect in a line).
Solution strategy: replace the system by a simpler equivalent system with the same solution(s).

Solving a system of linear equations

An example

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
3 x_{1}-5 x_{2}-16 x_{3} & =-5
\end{aligned}
$$

Add -3 times the first equation to the third equation to get the equivalent system

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
-2 x_{2}-19 x_{3} & =-32
\end{aligned}
$$

Solving a system of linear equations

An example

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}= & 9 \\
x_{2}+12 x_{3} & =21 \\
-2 x_{2}-19 x_{3} & =32
\end{aligned}
$$

Add 2 times the second equation to the third equation to get the equivalent system

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
5 x_{3} & =10
\end{aligned}
$$

Solving a system of linear equations

An example

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
x_{3} & =2
\end{aligned}
$$

Take the value $x_{3}=2$ from the third equation and back substitute in the second equation to get $x_{2}=-3$.
Then back substitute in the first equation to get $x_{1}=4$.
Thus our system of equations has a unique solution $\left(x_{1}, x_{2}, x_{3}\right)=(4,-3,2)$.

Solving a system of linear equations

An example

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
5 x_{3} & =10
\end{aligned}
$$

Divide the third equation by 5 to get the equivalent system

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =9 \\
x_{2}+12 x_{3} & =21 \\
x_{3} & =2
\end{aligned}
$$

Solving a system of linear equations

An example

Final check: verify that the values $\left(x_{1}, x_{2}, x_{3}\right)=(4,-3,2)$ do work in all three of the original equations

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}= & 9 \\
-2 x_{1}+3 x_{2}+10 x_{3}= & 3 \\
3 x_{1}-5 x_{2}-16 x_{3}= & -5
\end{aligned}
$$

It checks; we are done.

Solving a system of linear equations

Reinterpretation

In the preceding calculation, the variables x_{1}, x_{2}, x_{3} acted essentially as placeholders. Instead of working with the system

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}= & 9 \\
-2 x_{1}+3 x_{2}+10 x_{3}= & 3 \\
3 x_{1}-5 x_{2}-16 x_{3}= & -5
\end{aligned}
$$

we could work with the coefficient matrix

$$
\left(\begin{array}{rrr|r}
1 & -1 & 1 & 9 \\
-2 & 3 & 10 & 3 \\
3 & -5 & -16 & -5
\end{array}\right)
$$

An example of Gaussian elimination

Exercise 5(I) on page 26

Solve

$$
\begin{array}{r}
x_{1}-3 x_{2}+x_{3}=1 \\
2 x_{1}+x_{2}-x_{3}=2 \\
x_{1}+4 x_{2}-2 x_{3}=1 \\
5 x_{1}-8 x_{2}+2 x_{3}=5
\end{array}
$$

The corresponding matrix is

$$
\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
2 & 1 & -1 & 2 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{array}\right)
$$

Solving a system of linear equations

Reinterpretation

The allowed elementary row operations on matrices are:

- add a multiple of a row to another row
- multiply (or divide) a row by a nonzero number
- interchange two rows

The process of using these operations to reduce a matrix to echelon (stair-step) form is called Gaussian elimination.

An example of Gaussian elimination

Exercise $5(\mathrm{l})$ on page 26

$$
\begin{aligned}
&\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
2 & 1 & -1 & 2 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{array}\right) \xrightarrow{R_{2}-2 R_{1}}\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
1 & 4 & -2 & 1 \\
5 & -8 & 2 & 5
\end{array}\right) \\
& \xrightarrow{R_{3}-R_{1}}\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0 \\
5 & -8 & 2 & 5
\end{array}\right) \xrightarrow{R_{4}-5 R_{1}}\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0 \\
0 & 7 & -3 & 0
\end{array}\right) \\
& R_{4}-R_{2} \\
& R_{3}-R_{2}
\end{aligned}\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 7 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} / 7}\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

An example of Gaussian elimination

Exercise 5(I) on page 26

$$
\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Interpretation:

The variable x_{3} is a free variable whose value can be prescribed arbitrarily; then the values of x_{1} and x_{2} are determined. The original system of equations has infinitely many solutions.
To write the solutions, it is convenient to do an extra step to bring the system to reduced row echelon form (Gauss-Jordan reduction).

An example of Gaussian elimination

Exercise 5(I) on page 26

$$
\left(\begin{array}{rrr|r}
1 & -3 & 1 & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}+3 R_{2}}\left(\begin{array}{rrr|r}
1 & 0 & -\frac{2}{7} & 1 \\
0 & 1 & -\frac{3}{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Now you can read off the solution

$$
\begin{aligned}
& x_{1}=1+\frac{2}{7} x_{3} \\
& x_{2}=\frac{3}{7} x_{3} \\
& x_{3} \quad \text { arbitrary }
\end{aligned}
$$

The solution set represents a line in R^{3}.

An example of Gaussian elimination

Exercise 5(I) on page 26

Remark: In the computer program MATLAB, the following code produces the reduced row echelon form of the preceding example:

```
format rat;
A=[1 -3 1 1; 2 1 -1 2; 1 4 -2 1; 5 -8 2 5];
rref(A)
```

MATLAB's output is:

1	0	$-2 / 7$	1
0	1	$-3 / 7$	0
0	0	0	0
0	0	0	0

