Recap of last time

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
May 31, 2006

Matrix notation
Example. Suppose $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$.
The notation $a_{i j}$ denotes the matrix element in row i and column j. Thus $a_{23}=6$ and a general formula is

$$
a_{i j}=j+3(i-1)
$$

The matrix obtained by interchanging the rows and columns of A is the transpose, denoted A^{T}.

$$
A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

The $i j$ entry of A equals the $j i$ entry of A^{T}.
A square matrix is called symmetric if it equals its transpose.

Algorithms

- Gaussian elimination (echelon form)
- Gauss-Jordan reduction (reduced row echelon form)

Terminology

- equivalent linear systems
- elementary row operations
- back substitution
- augmented coefficient matrix

Linear combinations of matrices

Rectangular matrices of the same shape are added componentwise. Example:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & -1 \\
2 & 7 & -9
\end{array}\right)=\left(\begin{array}{rrr}
1 & 3 & 2 \\
6 & 12 & -3
\end{array}\right)
$$

Multiplication of a matrix by a scalar is computed componentwise. Example:

$$
2\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{rrr}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right)
$$

Multiplication of a matrix by a matrix follows a more complicated rule (coming up).

Interpreting a linear system as a vector equation

We can rewrite the example from yesterday

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}= & 9 \\
-2 x_{1}+3 x_{2}+10 x_{3}= & 3 \\
3 x_{1}-5 x_{2}-16 x_{3}= & -5
\end{aligned}
$$

as: $\quad x_{1}\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)+x_{2}\left(\begin{array}{r}-1 \\ 3 \\ -5\end{array}\right)+x_{3}\left(\begin{array}{r}1 \\ 10 \\ -16\end{array}\right)=\left(\begin{array}{r}9 \\ 3 \\ -5\end{array}\right)$.
Solving the linear system amounts to writing the column vector $\left(\begin{array}{r}9 \\ 3 \\ -5\end{array}\right)$ as a linear combination of the three column vectors $\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right),\left(\begin{array}{r}-1 \\ 3 \\ -5\end{array}\right)$, and $\left(\begin{array}{r}1 \\ 10 \\ -16\end{array}\right)$. [See Theorem 1.3.1, page 37.]

Product of matrices

We define the product of matrices to make the first matrix act independently on each column of the second matrix.
Example. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{5}{6}=\binom{17}{39}$ and $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{7}{8}=\binom{23}{53}$, so $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right)=\left(\begin{array}{ll}17 & 23 \\ 39 & 53\end{array}\right)$.
Warning! Matrix multiplication is not commutative.

$$
\left(\begin{array}{ll}
5 & 7 \\
6 & 8
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
26 & 38 \\
30 & 44
\end{array}\right)
$$

which is different from $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}5 & 7 \\ 6 & 8\end{array}\right)$.

Product of a matrix and a vector

We define the product of a matrix and a vector in order to make

$$
x_{1}\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right)+x_{2}\left(\begin{array}{r}
-1 \\
3 \\
-5
\end{array}\right)+x_{3}\left(\begin{array}{r}
1 \\
10 \\
-16
\end{array}\right)=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-2 & 3 & 10 \\
3 & -5 & -16
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Example.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)\binom{7}{8}=\left(\begin{array}{l}
1 \times 7+2 \times 8 \\
3 \times 7+4 \times 8 \\
5 \times 7+6 \times 8
\end{array}\right)=\left(\begin{array}{l}
23 \\
53 \\
83
\end{array}\right) .
$$

Identity and inverse

The additive identity matrix has all entries equal to 0 .
The multiplicative identity matrix $/$ has entries equal to 0 except for the main diagonal, which has entries equal to 1. Example:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+b\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Two matrices are multiplicative inverses if their product (in either order) is the multiplicative identity matrix. Example:

$$
\left(\begin{array}{ll}
7 & 3 \\
2 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -3 \\
-2 & 7
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
1 & -3 \\
-2 & 7
\end{array}\right)\left(\begin{array}{ll}
7 & 3 \\
2 & 1
\end{array}\right) .
$$

A matrix is singular if it does not have a multiplicative inverse.

