Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 1, 2006

Elementary matrices

Example. Multiplication by the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ does what?

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+b\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
a \\
2 a+b \\
c
\end{array}\right),
$$

so this matrix implements the elementary row operation of adding 2 times row 1 to row 2 .
In general, applying an elementary row operation to the identity matrix produces an "elementary matrix" that implements that row operation.

From last time:

- Solving a linear system is the same as writing a column vector as a linear combination of given column vectors.
- Matrix multiplication is not commutative.

Today:

- What are "elementary matrices"?
- Inverse matrices and solutions to linear systems.
- LU factorization of matrices.

Elementary matrices and inverse matrices
Example. Bring the matrix $A=\left(\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ to reduced row echelon form by multiplying by elementary matrices.

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & -6 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rll}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rll}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Elementary matrices and inverse matrices

Example continued

$$
\left(\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A=I
$$

so A^{-1} equals the product of the elementary matrices

$$
\left(\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

namely $\left(\begin{array}{rrr}1 & 0 & -3 \\ -2 & 1 & 6 \\ 0 & 0 & 1\end{array}\right)$.
In other words, the elementary row operations that turn the matrix A into the identity matrix also turn the identity matrix into the inverse matrix A^{-1}.

$L U$ factorization

Example continued

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right) \\
& A=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
7 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right) \\
& A=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & 2 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right):=L U .
\end{aligned}
$$

We have factored the matrix A as the product of a lower triangular matrix L and an upper triangular matrix U.

LU factorization

By tracking the elementary matrices that implement row operations, we can factor a matrix as a product of a lower triangular matrix and an upper triangular matrix.
Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \xrightarrow[R_{3}-7 R_{1}]{R_{2}-4 R_{1}}\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right) \xrightarrow{R_{3}-2 R_{2}}\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right) \\
& A=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-7 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)^{-1}\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Inverse matrices and solutions of linear systems

Suppose A is a square matrix, \mathbf{x} is a vector of unknowns, and \mathbf{b} is a column vector of numbers. The matrix equation $A \mathbf{x}=\mathbf{b}$ is equivalent to a linear system of simultaneous equations.

- If the matrix A is invertible, then the system has a unique solution: namely, $\mathbf{x}=A^{-1} \mathbf{b}$.
- If the matrix A is singular, then either the system is inconsistent or the system has infinitely many solutions.
- A homogeneous system (that is, $\mathbf{b}=\mathbf{0}$) is always consistent, so if A is invertible, a homogeneous system has the unique solution $\mathbf{x}=\mathbf{0}$, and if A is singular, a homogeneous system has infinitely many solutions.

