

Highlights

From last time:

- Using row operations to find inverse matrices.
- Using elementary matrices to find the $L U$ factorization of a matrix.
- Inverse matrices and solutions of linear systems.

Today:

- Determinants

Properties of determinants of $n \times n$ matrices

- The determinant of the identity matrix equals 1.
- More generally, the determinant of a triangular matrix (either upper triangular or lower triangular) equals the product of the numbers on the diagonal.
- Interchanging two rows of a matrix changes the sign of the determinant.
- The determinant is multiplicative: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

The first three properties tell us the determinant of any elementary matrix.
The fourth property then tells us how the determinant changes under elementary row operations.

Computing a determinant using row operations

Example: exercise 2a on page 103

$$
\begin{aligned}
& \begin{aligned}
\\
R_{3}+2 R_{1}
\end{aligned}=\left|\begin{array}{rrrr}
0 & 1 & 2 & 3 \\
1 & 1 & 1 & 1 \\
-2 & -2 & 3 & 3 \\
1 & 2 & -2 & -3
\end{array}\right| \stackrel{R_{1} \leftrightarrow R_{2}}{=}-\left|\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
-2 & -2 & 3 & 3 \\
1 & 2 & -2 & -3
\end{array}\right| \\
& R_{4}-R_{2}-\left|\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & -5 & -7
\end{array}\right| \stackrel{R_{4}+R_{3}}{=}-\left|\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & -2
\end{array}\right| \\
& \text { triangular }-1 \times 1 \times 5 \times(-2)=10 \text {. }
\end{aligned}
$$

More on cofactor expansion

You can expand a determinant along any row, and since $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$, you can also expand a determinant along any column.
Example. (exercise 5 on page 97, using the first column)

$$
\begin{aligned}
\left|\begin{array}{crr}
a-x & b & c \\
1 & -x & 0 \\
0 & 1 & -x
\end{array}\right| & =(a-x)\left|\begin{array}{rr}
-x & 0 \\
1 & -x
\end{array}\right|-\left|\begin{array}{rr}
b & c \\
1 & -x
\end{array}\right|+0\left|\begin{array}{rr}
b & c \\
-x & 0
\end{array}\right| \\
& =(a-x) x^{2}-(-b x-c)=-x^{3}+a x^{2}+b x+c
\end{aligned}
$$

We will see more examples like this when we study eigenvalues in Chapter 6

Cofactor expansion

If $a_{i j}$ is an element of a square matrix A, the corresponding minor is the determinant of the matrix that remains when row i and column j are deleted.
Example. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$, then the minor of the element 1
is $\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|=-3$, the minor of 2 is $\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|=-6$, and the minor of 3 is $\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|=-3$.
The cofactor of $a_{i j}$ is the minor multiplied by a plus sign if $i+j$ is even and a minus sign if $i+j$ is odd. In the example, the minors of 1 and 3 are both -3 , and the minor of 2 is $-(-6)=6$.
You can compute the determinant by picking a row, multiplying each element in that row by its cofactor, and adding the results.
Thus $\operatorname{det} A=1 \times(-3)+2 \times 6+3 \times(-3)=0$.

