

Definition and first examples of vector spaces

A vector space is a set of mathematical objects equipped with two operations: addition and multiplication by scalars (for us, usually the real numbers) satisfying the usual commutative, associative, and distributive laws. There should be an additive identity element $\mathbf{0}$, and each element should have an additive inverse, and the scalar 1 should be a multiplicative identity.
The formal axioms are listed in the textbook on page 119.

Basic examples.

- the Euclidean plane R^{2}
- Euclidean 3-space R^{3}
- Euclidean n-space R^{n}
- the space of $m \times n$ matrices $R^{m \times n}$

Highlights

From last time:

- The determinant tells whether a matrix is invertible.
- One way to compute a determinant: use row operations.
- Another way to compute a determinant: use cofactor expansion.

Today:

- Vector spaces and subspaces: definitions and examples.

More examples: function spaces

- The set P of all polynomials is a vector space. In this space, "vectors" are objects like $x^{8}+\frac{5}{2} x^{4}-7 x+\sqrt{3}$.
- Fix a counting number n. The set P_{n} of all polynomials with degree less than n is a vector space. This example is a subspace of the preceding space.
- Fix a closed interval $[a, b]$. The set $C[a, b]$ of all continuous functions on the interval is a vector space. In this space, "vectors" are objects like $5 e^{x}+|x| \cos (x)$.
- The set $C^{2}[a, b]$ of all functions with a continuous second derivative is a vector space. This example is a subspace of the preceding space.

Examples that fail to be vector spaces

- The set of polynomials of degree 2 is not a vector space. Not closed under addition: $\left(1+x^{2}\right)+\left(x-x^{2}\right)=(1+x)$; the degree does not stay equal to 2 . Also, the set lacks an additive identity element, because the polynomial 0 does not have degree 2.
- The set of polynomials with integral coefficients is not a vector space. The set is not closed under scalar multiplication; for instance, multiplication by $\sqrt{2}$ does not preserve the set.
- The set of solutions of the differential equation $y^{\prime \prime}+5 y^{\prime}+4 y=\sin (x)$ is not a vector space. Not closed under addition: the sum of two solutions satisfies the equation $y^{\prime \prime}+5 y^{\prime}+4 y=2 \sin (x)$.
In general, a subset of a vector space is a subspace if and only if it is closed under both addition and scalar multiplication.

Spanning sets

Example: exercise 11, page 133

Which of the vectors $\left(\begin{array}{l}2 \\ 6 \\ 6\end{array}\right)$ and $\left(\begin{array}{r}-9 \\ -2 \\ 5\end{array}\right)$ is in the span of the vectors $\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right)$? Restatement:
Is the system $x_{1}\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)+x_{2}\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 6 \\ 6\end{array}\right)$ consistent?
Is the system $x_{1}\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)+x_{2}\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right)=\left(\begin{array}{r}-9 \\ -2 \\ 5\end{array}\right)$ consistent?
Use row operations to find out.

Nullspace of a matrix

If A is an $m \times n$ matrix, then the nullspace $N(A)$ is the set of vectors \mathbf{x} in R^{n} such that $A \mathbf{x}=\mathbf{0}$.
The nullspace is always a subspace of R^{n}.
Example (\#4b, p. 132). $A=\left(\begin{array}{rrrr}1 & 2 & -3 & -1 \\ -2 & -4 & 6 & 3\end{array}\right)$. Find $N(A)$.
To solve $A \mathbf{x}=\mathbf{0}$, row reduce the augmented matrix:

$$
\left(\begin{array}{rrrr|r}
1 & 2 & -3 & -1 & 0 \\
-2 & -4 & 6 & 3 & 0
\end{array}\right) \xrightarrow{R_{2}+2 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & -3 & -1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

So $x_{4}=0, x_{2}$ and x_{3} are free variables, and $x_{1}=-2 x_{2}+3 x_{3}$.
The null space consists of all linear combinations of the vectors $\left(\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 1 \\ 0\end{array}\right)$, the so-called span of those vectors.

Exercise 11 continued

$$
\begin{aligned}
&\left(\begin{array}{rr|r}
-1 & 3 & 2 \\
2 & 4 & 6 \\
3 & 2 & 6
\end{array}\right) \xrightarrow[R_{3}+3 R_{1}]{R_{2}+2 R_{1}}\left(\begin{array}{rr|r}
-1 & 3 & 2 \\
0 & 10 & 10 \\
0 & 11 & 12
\end{array}\right) \xrightarrow{R_{2} / 10}\left(\begin{array}{rr|r}
-1 & 3 & 2 \\
0 & 1 & 1 \\
0 & 11 & 12
\end{array}\right) \\
& \xrightarrow{R_{3}-11 R_{2}}\left(\begin{array}{rr|r}
-1 & 3 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned} \text { inconsistent. }
$$

$$
\begin{array}{rc}
\left(\begin{array}{rr|r}
-1 & 3 & -9 \\
2 & 4 & -2 \\
3 & 2 & 5
\end{array}\right) \xrightarrow{\xrightarrow[R_{3}+3 R_{1}]{R_{2}+2 R_{1}}\left(\begin{array}{rr|r}
-1 & 3 & -9 \\
0 & 10 & -20 \\
0 & 11 & -22
\end{array}\right) \xrightarrow{R_{2} / 10}\left(\begin{array}{rr|r}
-1 & 3 & -9 \\
0 & 1 & -2 \\
0 & 11 & -22
\end{array}\right)} \\
& \xrightarrow{R_{3}-11 R_{2}}\left(\begin{array}{rr|r}
-1 & 3 & -9 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) \quad \text { consistent. }
\end{array}
$$

