Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 6, 2006

Linear dependence

Example. The span of the vectors $\binom{1}{0},\binom{0}{1}$, and $\binom{1}{1}$ is all of the space R^{2}. In fact, the span of any two of these three vectors is R^{2}. The three vectors are linearly dependent: in fact, they satisfy the relation

$$
\binom{1}{0}+\binom{0}{1}-\binom{1}{1}=\binom{0}{0} .
$$

In general, a set of vectors is called linearly dependent if

- one of the vectors is in the span of the others,
- or, equivalently, if a non-trivial linear combination of the vectors equals the $\mathbf{0}$ vector.

Reminder. The first examination is Friday, June 9.
From last time:

- vector spaces and subspaces
- the nullspace of a matrix
- spanning sets

Today:

- linear independence

Geometric interpretation

Two vectors in R^{3} are linearly dependent if they lie in the same line.
Three vectors in R^{3} are linearly dependent if they lie in the same plane.
Example. The vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ in R^{3} are linearly independent because they do not lie in a plane. The span of the vectors is all of R^{3}.

Equivalent conditions for linear independence

The follow conditions are equivalent:

- The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent.
- The equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{0}$ has only the trivial solution $x_{1}=x_{2}=\cdots=x_{n}=0$.
- The matrix A that has the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ as columns has trivial nullspace: $N(A)=\{\mathbf{0}\}$.
If the matrix A is square (the n vectors lie in the space R^{n}), then other equivalent conditions are: A is invertible; $\operatorname{det}(A) \neq 0$.

Example continued

The vector $\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$ is in the nullspace of the matrix

$$
\left(\begin{array}{rrr}
\sin (x) & \cos (x) & e^{x} \\
\cos (x) & -\sin (x) & e^{x} \\
-\sin (x) & -\cos (x) & e^{x}
\end{array}\right) .
$$

Compute the Wronskian determinant by row reducing:

$$
\begin{aligned}
& \left|\begin{array}{rrr}
\sin (x) & \cos (x) & e^{x} \\
\cos (x) & -\sin (x) & e^{x} \\
-\sin (x) & -\cos (x) & e^{x}
\end{array}\right| \stackrel{R_{3}+R_{1}}{=}\left|\begin{array}{ccc}
\sin (x) & \cos (x) & e^{x} \\
\cos (x) & -\sin (x) & e^{x} \\
0 & 0 & 2 e^{x}
\end{array}\right| \\
& =2 e^{x}\left|\begin{array}{cc}
\sin (x) & \cos (x) \\
\cos (x) & -\sin (x)
\end{array}\right|=2 e^{x}\left(-\sin ^{2} x-\cos ^{2} x\right)=-2 e^{x} \neq 0 .
\end{aligned}
$$

Therefore the nullspace of the matrix is trivial, so the functions $\sin (x), \cos (x)$, and e^{x} are linearly independent.

Example in a space of functions

Problem. Show that $\sin (x), \cos (x)$, and e^{x} are linearly independent functions in the space $C^{2}[0,1]$.
Solution. Suppose there were constants c_{1}, c_{2}, c_{3} such that

$$
c_{1} \sin (x)+c_{2} \cos (x)+c_{3} e^{x}=0
$$

Taking the first and second derivatives shows that also

$$
\begin{array}{r}
c_{1} \cos (x)-c_{2} \sin (x)+c_{3} e^{x}=0 \\
-c_{1} \sin (x)-c_{2} \cos (x)+c_{3} e^{x}=0 .
\end{array}
$$

Think of these three equations as a system of equations for the unknown vector $\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$.

