Highlights

Math 304
Linear Algebra

Harold P. Boas
boas@tamu.edu
June 7, 2006

Basis

A basis for a vector space is:

- a linearly independent set of vectors that spans the vector space
- equivalently, a maximal linearly independent set of vectors
- equivalently, a minimal spanning set for the vector space

Example. The standard basis for R^{3} consists of the three vectors $\mathbf{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\mathbf{e}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
One nonstandard basis for R^{3} consists of the three vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right) \text {, and } \mathbf{v}_{3}=\left(\begin{array}{l}
7 \\
8 \\
0
\end{array}\right)
$$

Reminder. The first examination is Friday, June 9.
From last time:

- A set of vectors is linearly independent if none of the vectors is in the span of the others.
- A set of vectors is linearly dependent if some non-trivial linear combination of the vectors equals the $\mathbf{0}$ vector.
Today:
- the notions of basis and dimension
- changing coordinates

Example: exercise 10 on page 151

Extract a basis for R^{3} from the following vectors:

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad \mathbf{x}_{4}=\left(\begin{array}{l}
2 \\
7 \\
4
\end{array}\right), \quad \mathbf{x}_{5}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Solution. The vectors \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent, but they do not form a basis for R^{3} because they do not span R^{3}. The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} do not form a basis because they are linearly dependent ($\mathbf{x}_{3}=\mathbf{x}_{2}-\mathbf{x}_{1}$). Vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{4} do not form a basis because they are linearly dependent:
$\operatorname{det}\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 5 & 7 \\ 2 & 4 & 4\end{array}\right)=0$. However, $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 1 \\ 2 & 4 & 0\end{array}\right)=-2 \neq 0$, so
vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{5} do form a basis for R^{3}.

Dimension

The dimension of a vector space is the number of vectors in a basis. (All bases of a vector space have the same number of vectors.)
Examples.

- The dimension of R^{3} equals 3 .
- The dimension of the space $R^{2 \times 5}$ of 2×5 matrices equals 10.
- The dimension of the space P_{3} of polynomials of degree less than 3 equals 3 . (One basis is $1, x, x^{2}$.)
- The function space $C[0,1]$ is infinite dimensional. (Any finite subset of the functions $1, x, x^{2}, x^{3}, \ldots$ is linearly independent.)

Example continued

Consider another nonstandard basis $\mathbf{v}_{1}=\binom{5}{6}, \mathbf{v}_{2}=\binom{4}{5}$.
How are coordinates with respect to the \mathbf{u} basis related to coordinates with respect to the \mathbf{v} basis?
The matrix $\left(\begin{array}{ll}5 & 4 \\ 6 & 5\end{array}\right)$ whose columns are \mathbf{v}_{1} and \mathbf{v}_{2} transforms \mathbf{v} coordinates to standard coordinates, and the inverse matrix $\left(\begin{array}{rr}5 & -4 \\ -6 & 5\end{array}\right)$ transforms from standard coordinates to \mathbf{v} coordinates. Since $\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$ transforms from \mathbf{u} coordinates to standard coordinates, the product matrix

$$
\left(\begin{array}{rr}
5 & -4 \\
-6 & 5
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
1 & -9 \\
-1 & 11
\end{array}\right)
$$

transforms from \mathbf{u} coordinates to \mathbf{v} coordinates. So the \mathbf{v} coordinates of \mathbf{x} are $\left(\begin{array}{rr}1 & -9 \\ -1 & 11\end{array}\right)\binom{4}{-1}_{\mathbf{u}}=\binom{13}{-15}_{\mathbf{v}}$.

Change of basis: an example

Let $\mathbf{u}_{1}=\binom{1}{1}$ and $\mathbf{u}_{2}=\binom{-1}{1}$ be a nonstandard basis for R^{2}, and let \mathbf{e}_{1} and \mathbf{e}_{2} be the standard basis vectors. Let $\mathbf{x}=\binom{5}{3}$. Then $\mathbf{x}=5 \mathbf{e}_{1}+3 \mathbf{e}_{2}$. In other words, 5 and 3 are the coordinates of the vector \mathbf{x} with respect to the standard basis. Since $\mathbf{x}=4 \mathbf{u}_{1}-\mathbf{u}_{2}$, the coordinates of \mathbf{x} with respect to the \mathbf{u} basis are 4 and -1 .
Question. How are the u coordinates and the standard coordinates related?

$$
\binom{5}{3}_{e}=\mathbf{x}=4 \mathbf{u}_{1}-\mathbf{u}_{2}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\binom{4}{-1}_{u}
$$

The transition matrix between u coordinates and standard coordinates is the matrix whose columns are the standard coordinates of the \mathbf{u} basis vectors. The inverse matrix gives the change from standard coordinates to \mathbf{u} coordinates.

