Math 304

Linear Algebra

Harold P. Boas
boas@tamu.edu
June 14, 2006

Highlights

From last time:

- linear transformations

Today:

- matrix representations of linear transformations

Example continued

Composing the preceding operator with a reflection and a rotation produces a new transformation T that takes

Math 304

into

Find a matrix that represents the new transformation T.

Example modified for a nonstandard basis

The previous cases represented transformations with respect to the standard basis.
Consider a nonstandard basis $\mathbf{u}_{1}=\binom{1}{1}$ and $\mathbf{u}_{2}=\binom{1}{-1}$.

- What matrix A transforms the \mathbf{u}-coordinates of a vector \mathbf{x} into the standard coordinates of the image $T(\mathbf{x})$?
- What matrix B transforms the \mathbf{u}-coordinates of a vector \mathbf{x} into the \mathbf{u}-coordinates of the image $T(\mathbf{x})$?
- What matrix C transforms the \mathbf{u}-coordinates of a vector \mathbf{x} into the \mathbf{v}-coordinates of the image $T(\mathbf{x})$, where $\mathbf{v}_{1}=\binom{2}{1}$ and $\mathbf{v}_{2}=\binom{3}{2}$?

