Highlights

Math 304 Linear Algebra

Harold P. Boas

boas@tamu.edu

June 14, 2006

From last time:

linear transformations

Today:

matrix representations of linear transformations

Example

A certain linear operator *L* on R^2 has the following action:

input:

output:

Math 304 Math 304

Determine L.

Since $L\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$ and $L\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$, the transformation *L* is represented by multiplication by the matrix $\begin{pmatrix}1 & 1\\0 & 1\end{pmatrix}$ whose columns are the images under *L* of the standard basis vectors.

Example continued

Composing the preceding operator with a reflection and a rotation produces a new transformation T that takes

Math 304

Find a matrix that represents the new transformation T.

into

Example modified for a nonstandard basis

The previous cases represented transformations with respect to the standard basis.

Consider a nonstandard basis $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{u}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

- What matrix A transforms the u-coordinates of a vector x into the standard coordinates of the image T(x)?
- What matrix B transforms the u-coordinates of a vector x into the u-coordinates of the image T(x)?
- ▶ What matrix *C* transforms the **u**-coordinates of a vector **x** into the **v**-coordinates of the image $T(\mathbf{x})$, where $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

and
$$\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
?